Volume 16, Number 7—July 2010
Dispatch
Geographic Differences in Genetic Locus Linkages for Borrelia burgdorferi
Table
ospC | IGS1 | Geographic region* | Representative cultured isolate or tick sample† | IGS1-ospC associations‡ | ospA | IGS2 | MLST§ |
---|---|---|---|---|---|---|---|
A | 1 | 1, 2 | B31 | 45/52 | 1 | 1 | 1 |
A | 11 | 2 | 2206617 | 4/4 | 22 | 1 | 55 |
A | 10 | 3 | CA4, CA6 | 14/18 | 23 | 1 | 2 |
Ba | 3 | 1 | 64b, B373 | 39/41 | 3 | 1 | 7,58,59 |
Ba | 6 | 2 | 51405UT | 7/9 | 14 | 1 | 30 |
Bb | 16 | 4 | ZS7 | – | 28 | – | 20 |
C | 24 | 1 | JD1, BL515 | 10/10 | 8 | 5 | 11 |
Da | 5 | 1 | 516113 | 13/14 | 5 | 4 | 38 |
Db | 5 | 2 | 424404 | 13/15 | 18 | 7 | 51 |
Db | 19 | 3 | CA11.2A | 16/16 | 27 | 4 | 70 |
E | 9 | 1, 2 | N40, B348 | 17/19 | 9 | 1 | 19 |
Fa | 17 | 1, 2, 3 | B156 | 61/64 | 3 | 4 | 8 |
Fb | 18 | 2 | MI407 | 14/19 | 8 | 6 | – |
Fc | 18 | 2 | 1469205 | 7/8 | 13 | 6 | 56 |
G | 26 | 1 | 72a, MR616 | 10/11 | 9 | 4 | 14 |
G | 22 | 2, 3 | 1468503 | 9/10 | 21 | 4 | 48,49 |
Ha/Hb | 12 | 1 | B509/156a | 13/13 | 2 | 2 | 4 |
Hb | 12 | 2 | 519014UT | 56/65 | 11 | 2 | 32 |
Hb | 13 | 3 | CA92-0953 | 20/20 | 23 | 2 | 6 |
Ia | 7 | 1 | B500, B331 | 12/16 | 7 | 4 | 15,16 |
Ia | 7 | 2 | WI91-23 | 5/5 | 11 | 4 | 71 |
Ib | 7 | 3 | CA92-1096 | – | 30 | 4 | 17 |
J | 20 | 1, 2 | 118a | 3/5 | 8 | 4 | 34 |
K | 2 | 1 | 297 | 67/68 | 2 | 2 | 3 |
K | 14 | 2 | 149901 | 7/10 | 31 | 2 | – |
L | 14 | 2 | 47703UT | 23/25 | 8 | 2 | 29 |
M | 6 | 1 | 29805 | 4/4 | 2 | 3 | 12 |
M | 6 | 2, 3 | CA92-1337 | 16/16 | 17 | 3 | 13 |
N | 4 | 1 | MR661, 500203 | 41/41 | 4 | 10 | 9,36 |
N | 23 | 2 | 51108 | 8/10 | 2 | 1 | 43 |
Oa | 27 | 1 | 501427 | 1/1 | – | – | 54 |
Ob | 6 | 2 | 2207807 | 6/7 | 2 | – | – |
T | 28 | 1 | 23509 | 16/16 | 8 | 4 | 37 |
T | 29 | 2 | 1476702 | 10/11 | 20 | 4 | 46 |
Ua | 8 | 1 | 94a, B485 | 19/19 | 8 | 4 | 18 |
Ua | 8 | 2 | 48802 | 4/4 | 16 | 4 | 47 |
Ua | 17 | 2 | 2207116 | 4/4 | 12 | 10 | – |
Ub | 30 | 2 | 426905 | 3/3 | 8 | 9 | – |
A3 | 14 | 2 | 2206613 | 6/6 | 19 | 2 | – |
B3 | 23 | 1, 2 | 2250201 | 3/3 | 17 | 1 | 57 |
C3 | 17 | 2 | 50202 | 6/9 | 15 | 5 | – |
D3 | 31 | 2 | 2150902 | 1/1 | – | – | – |
E3 | 20 | 2 | 2127701 | 4/4 | 8 | 8 | 52 |
E3 | 21 | 3 | HRT25 | 12/12 | 24 | – | – |
E3 | 5 | 3 | LMR28 | 12/12 | 25 | – | – |
F3 | 5 | 2 | 1456802 | 8/12 | 8 | 4 | – |
H3 | 25 | 3 | CA8 | 37/40 | 26 | 4 | (72) |
I3 | 17 | 3 | CA11, CA12 | 5/5 | 27 | 4 | – |
*Regions: 1, northeastern United States; 2, north-central United States; 3, northern California; 4, western Europe; osp, outer surface protein; IGS, intergenic spacer; MLST, multilocus sequence typing; –, MLST not determined.
†Tick samples (4) are indicated by italics; strains with genome sequences are indicated in boldface.
‡Number of tick extracts with the listed IGS1 locus (numerator)/number of extracts with the listed ospC allele (denominator).
§MLST from (4,12) or this study (in parentheses).
References
- Brisson D, Dykhuizen DE. ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics. 2004;168:713–22. DOIPubMedGoogle Scholar
- Wormser GP, Brisson D, Liveris D, Hanincova K, Sandigursky S, Nowakowski J, Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis. 2008;198:1358–64. DOIPubMedGoogle Scholar
- Dykhuizen DE, Brisson D, Sandigursky S, Wormser GP, Nowakowski J, Nadelman RB, The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am J Trop Med Hyg. 2008;78:806–10.PubMedGoogle Scholar
- Hoen AG, Margos G, Bent SJ, Diuk-Wasser MA, Barbour AG, Kurtenbach K, Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proc Natl Acad Sci U S A. 2009;106:15013–8. DOIPubMedGoogle Scholar
- Girard YA, Travinsky B, Schotthoefer A, Federova N, Eisen RJ, Eisen L, Population structure of the Lyme disease spirochete Borrelia burgdorferi in the western black-legged tick (Ixodes pacificus) in northern California. Appl Environ Microbiol. 2009;75:7243–52. DOIPubMedGoogle Scholar
- Qiu WG, Schutzer SE, Bruno JF, Attie O, Xu Y, Dunn JJ, Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc Natl Acad Sci U S A. 2004;101:14150–5. DOIPubMedGoogle Scholar
- Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology. 2004;150:1741–55. DOIPubMedGoogle Scholar
- Derdakova M, Beati L, Pet'ko B, Stanko M, Fish D. Genetic variability within Borrelia burgdorferi sensu lato genospecies established by PCR-single-strand conformation polymorphism analysis of the rrfA-rrlB intergenic spacer in Ixodes ricinus ticks from the Czech Republic. Appl Environ Microbiol. 2003;69:509–16. DOIPubMedGoogle Scholar
- Qiu WG, Dykhuizen DE, Acosta MS, Luft BJ. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. Genetics. 2002;160:833–49.PubMedGoogle Scholar
- Hanincova K, Liveris D, Sandigursky S, Wormser GP, Schwartz I. Borrelia burgdorferi sensu stricto is clonal in patients with early Lyme borreliosis. Appl Environ Microbiol. 2008;74:5008–14. DOIPubMedGoogle Scholar
- Barbour AG, Bunikis J, Travinsky B, Hoen AG, Diuk-Wasser MA, Fish D, Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg. 2009;81:1120–31. DOIPubMedGoogle Scholar
- Margos G, Gatewood AG, Aanensen DM, Hanincova K, Terekhova D, Vollmer SA, MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2008;105:8730–5. DOIPubMedGoogle Scholar
- Wang IN, Dykhuizen DE, Qiu W, Dunn JJ, Bosler EM, Luft BJ. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics. 1999;151:15–30.PubMedGoogle Scholar
- Attie O, Bruno JF, Xu Y, Qiu D, Luft BJ, Qiu WG. Co-evolution of the outer surface protein C gene (ospC) and intraspecific lineages of Borrelia burgdorferi sensu stricto in the northeastern United States. Infect Genet Evol. 2007;7:1–12. DOIPubMedGoogle Scholar
- Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 1988;26:2465–6.PubMedGoogle Scholar
Page created: March 02, 2011
Page updated: March 02, 2011
Page reviewed: March 02, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.