Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 7—July 2010
Dispatch

Geographic Differences in Genetic Locus Linkages for Borrelia burgdorferi

Bridgit Travinsky, Jonas Bunikis, and Alan G. BarbourComments to Author 
Author affiliations: University of California, Irvine, California, USA

Main Article

Table

Linkages between ospC alleles and other loci in Borrelia burgdorferi strains*

ospC IGS1 Geographic region* Representative cultured isolate or tick sample† IGS1-ospC associations‡ ospA IGS2 MLST§
A 1 1, 2 B31 45/52 1 1 1
A 11 2 2206617 4/4 22 1 55
A 10 3 CA4, CA6 14/18 23 1 2
Ba 3 1 64b, B373 39/41 3 1 7,58,59
Ba 6 2 51405UT 7/9 14 1 30
Bb 16 4 ZS7 28 20
C 24 1 JD1, BL515 10/10 8 5 11
Da 5 1 516113 13/14 5 4 38
Db 5 2 424404 13/15 18 7 51
Db 19 3 CA11.2A 16/16 27 4 70
E 9 1, 2 N40, B348 17/19 9 1 19
Fa 17 1, 2, 3 B156 61/64 3 4 8
Fb 18 2 MI407 14/19 8 6
Fc 18 2 1469205 7/8 13 6 56
G 26 1 72a, MR616 10/11 9 4 14
G 22 2, 3 1468503 9/10 21 4 48,49
Ha/Hb 12 1 B509/156a 13/13 2 2 4
Hb 12 2 519014UT 56/65 11 2 32
Hb 13 3 CA92-0953 20/20 23 2 6
Ia 7 1 B500, B331 12/16 7 4 15,16
Ia 7 2 WI91-23 5/5 11 4 71
Ib 7 3 CA92-1096 30 4 17
J 20 1, 2 118a 3/5 8 4 34
K 2 1 297 67/68 2 2 3
K 14 2 149901 7/10 31 2
L 14 2 47703UT 23/25 8 2 29
M 6 1 29805 4/4 2 3 12
M 6 2, 3 CA92-1337 16/16 17 3 13
N 4 1 MR661, 500203 41/41 4 10 9,36
N 23 2 51108 8/10 2 1 43
Oa 27 1 501427 1/1 54
Ob 6 2 2207807 6/7 2
T 28 1 23509 16/16 8 4 37
T 29 2 1476702 10/11 20 4 46
Ua 8 1 94a, B485 19/19 8 4 18
Ua 8 2 48802 4/4 16 4 47
Ua 17 2 2207116 4/4 12 10
Ub 30 2 426905 3/3 8 9
A3 14 2 2206613 6/6 19 2
B3 23 1, 2 2250201 3/3 17 1 57
C3 17 2 50202 6/9 15 5
D3 31 2 2150902 1/1
E3 20 2 2127701 4/4 8 8 52
E3 21 3 HRT25 12/12 24
E3 5 3 LMR28 12/12 25
F3 5 2 1456802 8/12 8 4
H3 25 3 CA8 37/40 26 4 (72)
I3 17 3 CA11, CA12 5/5 27 4

*Regions: 1, northeastern United States; 2, north-central United States; 3, northern California; 4, western Europe; osp, outer surface protein; IGS, intergenic spacer; MLST, multilocus sequence typing; –, MLST not determined.
†Tick samples (4) are indicated by italics; strains with genome sequences are indicated in boldface.
‡Number of tick extracts with the listed IGS1 locus (numerator)/number of extracts with the listed ospC allele (denominator).
§MLST from (4,12) or this study (in parentheses).

Main Article

References
  1. Brisson  D, Dykhuizen  DE. ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics. 2004;168:71322. DOIPubMedGoogle Scholar
  2. Wormser  GP, Brisson  D, Liveris  D, Hanincova  K, Sandigursky  S, Nowakowski  J, Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis. 2008;198:135864. DOIPubMedGoogle Scholar
  3. Dykhuizen  DE, Brisson  D, Sandigursky  S, Wormser  GP, Nowakowski  J, Nadelman  RB, The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am J Trop Med Hyg. 2008;78:80610.PubMedGoogle Scholar
  4. Hoen  AG, Margos  G, Bent  SJ, Diuk-Wasser  MA, Barbour  AG, Kurtenbach  K, Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proc Natl Acad Sci U S A. 2009;106:150138. DOIPubMedGoogle Scholar
  5. Girard  YA, Travinsky  B, Schotthoefer  A, Federova  N, Eisen  RJ, Eisen  L, Population structure of the Lyme disease spirochete Borrelia burgdorferi in the western black-legged tick (Ixodes pacificus) in northern California. Appl Environ Microbiol. 2009;75:724352. DOIPubMedGoogle Scholar
  6. Qiu  WG, Schutzer  SE, Bruno  JF, Attie  O, Xu  Y, Dunn  JJ, Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc Natl Acad Sci U S A. 2004;101:141505. DOIPubMedGoogle Scholar
  7. Bunikis  J, Garpmo  U, Tsao  J, Berglund  J, Fish  D, Barbour  AG. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology. 2004;150:174155. DOIPubMedGoogle Scholar
  8. Derdakova  M, Beati  L, Pet'ko  B, Stanko  M, Fish  D. Genetic variability within Borrelia burgdorferi sensu lato genospecies established by PCR-single-strand conformation polymorphism analysis of the rrfA-rrlB intergenic spacer in Ixodes ricinus ticks from the Czech Republic. Appl Environ Microbiol. 2003;69:50916. DOIPubMedGoogle Scholar
  9. Qiu  WG, Dykhuizen  DE, Acosta  MS, Luft  BJ. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. Genetics. 2002;160:83349.PubMedGoogle Scholar
  10. Hanincova  K, Liveris  D, Sandigursky  S, Wormser  GP, Schwartz  I. Borrelia burgdorferi sensu stricto is clonal in patients with early Lyme borreliosis. Appl Environ Microbiol. 2008;74:500814. DOIPubMedGoogle Scholar
  11. Barbour  AG, Bunikis  J, Travinsky  B, Hoen  AG, Diuk-Wasser  MA, Fish  D, Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg. 2009;81:112031. DOIPubMedGoogle Scholar
  12. Margos  G, Gatewood  AG, Aanensen  DM, Hanincova  K, Terekhova  D, Vollmer  SA, MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2008;105:87305. DOIPubMedGoogle Scholar
  13. Wang  IN, Dykhuizen  DE, Qiu  W, Dunn  JJ, Bosler  EM, Luft  BJ. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics. 1999;151:1530.PubMedGoogle Scholar
  14. Attie  O, Bruno  JF, Xu  Y, Qiu  D, Luft  BJ, Qiu  WG. Co-evolution of the outer surface protein C gene (ospC) and intraspecific lineages of Borrelia burgdorferi sensu stricto in the northeastern United States. Infect Genet Evol. 2007;7:112. DOIPubMedGoogle Scholar
  15. Hunter  PR, Gaston  MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 1988;26:24656.PubMedGoogle Scholar

Main Article

Page created: March 02, 2011
Page updated: March 02, 2011
Page reviewed: March 02, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external