Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 9—September 2010

Cercarial Dermatitis Transmitted by Exotic Marine Snail

Sara V. BrantComments to Author , Andrew N. Cohen, David James, Lucia Hui, Albert Hom, and Eric S. Loker
Author affiliations: Author affiliations: University of New Mexico, Albuquerque, New Mexico, USA (S.V. Brant, E.S. Loker); Center for Research on Aquatic Bioinvasions, Richmond, California, USA (A.N. Cohen); Alameda County Vector Control Services District, Alameda, California, USA (D. James, L. Hui, A. Hom)

Main Article

Table 2

Characteristics of selected schistosome cercariae from 5 locations, United States*

Species Unidentified Gigantobilharzia huttoni G. huronensis Austrobilharzia variglandis A. variglandis A. variglandis
Number 14 30 50 ? 10 232
Fixative Alcohol Formalin Formalin Bouin solution or hot corrosive sublimate fluid Formalin Formalin
Host species Haminoea japonica H. antillarum guadalupensis Physa gyrina Ilyanassa obsoleta I. obsoleta I. obsoleta
Collection location San Francisco Bay, CA Virginia Key, Miami, FL Ann Arbor, MI Quamquissett Harbor, MA Rhode Island San Francisco Bay, CA
Body length 188 ± 4.8
(160–216) 152 ± 1.4
(135–164) 240
(195–270) 262 237
(220–250) 258
Body width 58 ± 1.3
(50–64) 35 ± 0.7
(48–64) 72.5
(63.7–105) 77 72.5
Tail stem length 175 ± 3.3
(155–197) 154 ± 1.2
(140–166) 268.5
(255–300) 157 228
(200–236) 286
Tail stem width 24 ± 0.7
(21–29) 19 ± 0.3
(16–22) 30
(22.5–45) 22–36
Furca length 78 ± 2.6
(60–92) 79 ± 0.8
(72–86) 146.8
(102.5–172.5) 105 126
(120–140) 190
Furca width 13 ± 0.6
(10–16) 10 ± 0.4
(6–13) 15 12.0–16.5
Oral sucker length 57 ± 1.9
(49–70) 63 ± 0.6
(54–70) 72
Oral sucker width 46 ± 0.7
(43–51) 53 ± 0.7
(48–64) 43
Ventral sucker to posterior end 54 ± 3.3
(35–76) 44 ± 0.1
Body length:tail stem length 1.1 0.99 0.89 1.7 1 0.9
Tail stem length:furca length 2.2 1.9 1.8 1.5 1.8 1.5
Pairs of flame cells† 4 + 1 4 + 1 4 + 1 5 + 1 5 + 1
Pairs of penetration glands 3 5–6 5 6 6
Reference This report (24,29) (30) (31) (14) (1)

*Values are mean ± SE in microns (range), or range only, unless otherwise indicated. For Miller and Northup (31), the tail stem and furca lengths were estimated values based on information in the text. For Grodhaus and Keh (1), the ranges were mean values for 7 lots of cercariae obtained from 7 snails.
†No. pairs in body plus no. pairs in tail.

Main Article

  1. Grodhaus  G, Keh  B. The marine dermatitis-producing cercaria of Austrobilharzia variglandis in California (Trematoda: Schistosomatidae). J Parasitol. 1958;44:6338. DOIPubMedGoogle Scholar
  2. Lafferty  KD, Smith  KF, Torchin  ME, Dobson  AP, Kuris  AM. The role of infectious disease in natural communities: what introduced species tell us. In: Sax DF, Stachowicz JJ, Gaines SD, editors. Species invasions: insights into ecology, evolution, and biogeography. Sunderland (MA): Sinauer Associates; 2005. p. 111–34.
  3. Sauer  JS, Cole  RA, Nissen  JM. Finding the exotic faucet snail (Bithynia tentaculata): investigation of waterbird die-offs on the Upper Mississippi River National Wildlife and Fish Refuge: U.S. Geological Survey Open-File Report 2007–1065. Washington: The Survey; 2007.
  4. Miura  O, Torchin  ME, Kuris  AM, Hechinger  RF, Chiba  S. Introduced cryptic species of parasites exhibit different invasion pathways. Proc Natl Acad Sci U S A. 2006;103:1981823. DOIPubMedGoogle Scholar
  5. Torchin  ME, Byers  JE, Huspeni  TC. Differential parasitism of native and introduced snails: replacement of a parasite fauna. Biological Investigations. 2005;7:88594. DOIGoogle Scholar
  6. Telfer  S, Bown  KJ, Sekules  R, Begon  I, Hayden  T, Birtles  R. Disruption of a host-parasite system following the introduction of an exotic host species. Parasitology. 2005;130:6618. DOIPubMedGoogle Scholar
  7. Wyatt  KB, Campos  PF, Gilbert  M, Thomas  P, Gilbert  P, Kolokotronis  SO, Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS ONE. 2008;3:e3602. DOIPubMedGoogle Scholar
  8. Torchin  ME, Lafferty  KD, Dobson  AP, McKenzie  VJ, Kuris  AM. Introduced species and their missing parasites. Nature. 2003;421:62830. DOIPubMedGoogle Scholar
  9. Friend  M, McLean  RG, Dein  FJ. Disease emergence in birds: challenges for the twenty-first century. Auk. 2001;118:290303. DOIGoogle Scholar
  10. Carlton  JT. San Francisco Bay—the urbanized estuary: investigations into the natural history of San Francisco Bay and Delta with reference to the influence of man. Conomos TJ, editor. Symposium held in conjunction with the Annual Meeting of the Pacific Section of The American Society of Limnology and Oceanography, June 12–16, 1977, in affiliation with the 58th Annual Meeting of the Pacific Division, American Association for the Advancement of Science, San Francisco, Pacific Division. Washington: American Association for the Advancement of Science; 1979. p. 427–44.
  11. Cohen  AN, Carlton  JT. Biological study. Nonindigenous aquatic species in a United States estuary: a case study of the biological invasions of the San Francisco Bay and Delta. NTIS PB96–166525. Washington: US Fish and Wildlife Service and the National Sea Grant College Program, Connecticut Sea Grant; 1995.
  12. Cohen  AN, Carlton  JT. Accelerating invasion rate in a highly invaded estuary. Science. 1998;279:5558. DOIPubMedGoogle Scholar
  13. Penner  LR. Cercaria littorinalinae sp. nov., a dermatitis-producing schistosome larva from the marine snail, Littorina planaxis Philippi. J Parasitol. 1950;36:46672. DOIPubMedGoogle Scholar
  14. Stunkard  HW, Hinchliffe  MC. The morphology and life history of Microbilharzia variglandis (Miller and Northup, 1926) Stunkard and Hinchliffe, 1951, avian blood flukes whose larvae cause “swimmer’s itch” of ocean beaches. J Parasitol. 1952;38:24865. DOIPubMedGoogle Scholar
  15. Arnold  HL, Bonnet  DD. Swimmer’s itch, its first appearance in Hawaii. Proceedings of the Hawaiian Academy of Science. 1950;25:4.
  16. Penner  LR. The biology of a marine dermatitis producing schistosome cercaria from Batillaria minima. J Parasitol. 1953;39:1920.
  17. Rohde  K. The bird schistosome Austrobilharzia terrigalensis from the Great Barrier Reef, Australia. Z Parasitenkd. 1977;52:3951. DOIPubMedGoogle Scholar
  18. Tang  Z, Tang  C. Dermatitis producing schistosomes of birds and mammals in China [in Chinese]. Acta Zoologica Sinica. 1976;22:34160.
  19. Appleton  CC. Studies on Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) in the Swan Estuary, Western Australia: infection in the definitive host Larus novaehollandiae. Int J Parasitol. 1983;13:24959. DOIPubMedGoogle Scholar
  20. Leighton  BJ, Ratzlaff  D, McDougall  C, Stewart  G, Nadan  A, Gustafson  L. Schistosome dermatitis at Crescent Beach, preliminary report. Environmental Health Review. 2004;48:513.
  21. Bearup  AJ. A schistosome larva from the marine snail Pyrazus australis as a cause of cercarial dermatitis in man. Med J Aust. 1955;42:95560.PubMedGoogle Scholar
  22. Gosliner  TM, Behrens  DW. Anatomy of an invasion: systematics and distribution of the introduced opisthobranch snail, Haminoea japonica Pilsbry, 1895 (Gastropoda: Opisthobranchia: Haminoeidae). Proc Calif Acad Sci. 2006;57:100310.
  23. Leigh  WH. The morphology of Gigantobilharzia huttoni (Leigh, 1953), an avian schistosome with marine dermatitis producing larvae. J Parasitol. 1955;41:2629. DOIPubMedGoogle Scholar
  24. Brant  SV, Morgan  JAT, Mkoji  GM, Snyder  SD, Rajapakse  JR, Loker  ES. An approach to revealing blood fluke life cycles, taxonomy, and diversity: provision of key reference data including DNA sequence from single life cycle stages. J Parasitol. 2006;92:7788. DOIPubMedGoogle Scholar
  25. Brant  SV, Loker  ES. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J Parasitol. 2009;95:94163. DOIPubMedGoogle Scholar
  26. Swofford  DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Sunderland (MA): Sinauer Associates; 2002.
  27. Ronquist  F, Huelsenbeck  JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:15724. DOIPubMedGoogle Scholar
  28. Posada  D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:12536. DOIPubMedGoogle Scholar
  29. Leigh  WH. Cercaria huttoni, sp. nov., a dermatitis-producing schistosome larva from the marine snail, Haminoea antillarum guadalupensis Sowerby. J Parasitol. 1953;39:6259. DOIPubMedGoogle Scholar
  30. Najim  AT. Life history of Gigantobilharzia huronensis Najim, 1950, a dermatitis-producing bird blood-fluke (Trematoda-Schistosomatidae). Parasitology. 1956;46:44369. DOIPubMedGoogle Scholar
  31. Miller  HM Jr, Northup  FE. The seasonal infestation of Nassa obsoleta (Say) with larval trematodes. Biol Bull. 1926;50:490509. DOIGoogle Scholar
  32. Hutton  RF. Schistosome cercariae as the probable cause of seabather’s eruption. Bull Mar Sci Gulf Caribb. 1952;2:34659.
  33. Ewers  WH. A new intermediate host of schistosome trematodes from New South Wales. Nature. 1961;190:2834. DOIPubMedGoogle Scholar
  34. Martorelli  SR, Alda  P. Larval digeneans of the siphonariid pulmonates Siphonaria lessoni and Kerguelenella lateralis and the flabelliferan isopod Exosphaeroma sp. from the intertidal zone of the Argentinean Sea. Comp Parasitol. 2009;76:26772. DOIGoogle Scholar
  35. Khalifa  R. Studies on schistosomatidae Looss. (Trematoda) of aquatic birds of Poland II. Gigantobilharzia mazuriana sp. n., with a discussion of the subfamily Gigantobilharziinae Mehra, 1940. Acta Parasitologica Polonica. 1899;1974:265–84.
  36. Leigh  WH. Brown and white pelicans as hosts for schistosomes of the genus Gigantobilharzia. J Parasitol. 1957;43:356.
  37. Kinsella  JM, Spalding  MG, Forrester  DJ. Parasitic helminths of the American White Pelican, Pelecanus erythrorhynchos, from Florida, U.S.A. Comp Parasitol. 2004;71:2936. DOIGoogle Scholar
  38. Cort  WW. Studies on schistosome dermatitis XI. Status of knowledge after more than twenty years. Am J Hyg. 1950;52:251307.PubMedGoogle Scholar
  39. Brant  SV, Loker  ES. Can specialized pathogens colonize distantly related hosts? Schistosome evolution as a case study. PLoS Pathog. 2005;1:1679. DOIPubMedGoogle Scholar
  40. Gibson  GD, Chia  F. Description of a new species of Haminoea, Haminoea callidegenita (Mollusca: Opisthobranchia), with a comparison with two other Haminoea species found in the northeast Pacific. Can J Zool. 1989;67:91422. DOIGoogle Scholar

Main Article

Page created: August 28, 2011
Page updated: August 28, 2011
Page reviewed: August 28, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.