Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 7—July 2011
Letter

Israeli Spotted Fever, Tunisia

On This Page
Article Metrics
19
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: Mediterranean spotted fever (MSF) caused by Rickettsia conorii was the first rickettsiosis described in Tunisia. R. conorii was thought to be the only species existing in this country. However, authors reported other rickettsioses either from spotted fever group or typhus group (1,2). In Sfax, a town in southern Tunisia, physicians noted patients with severe forms of MSF and suspected the presence of other species or a virulent R. conorii strain. We report 2 cases of Israeli spotted fever (ISF) from Sfax that were confirmed by detection of rickettsial DNA in skin biopsy specimens.

In September 2009, two previously healthy men, 45 and 46 years of age (patients 1 and 2, respectively), were hospitalized in the infectious disease department of Hedi Chaker University Hospital (Sfax, Tunisia). They came from suburban areas 30 km apart. The men were admitted with histories of fever of a few days’ duration and cutaneous maculopapular rash. Patient 1 had fever of 38°C, chills, headache, and arthromyalgia without hemodynamic abnormalities. Patient 2 was admitted with fever of 41°C, conjunctivitis, and cardiovascular collapse; he was treated in an intensive care unit for 1 day. No inoculation eschar was found on either patient. Biological findings for the 2 patients showed a leukocyte count within normal ranges, anemia, thrombopenia, high levels of C-reactive protein, and elevated liver enzymes. Both patients had contact with dogs, but neither patient reported a tick bite. The patient with more severe illness worked in the livestock importation industry; his illness developed 5 days after his return from a 2-week trip to Libya. The patients received 200 mg doxycycline per day for 10 days and improved rapidly.

Skin biopsy specimens from the rash and whole blood samples were obtained from the 2 patients. PCRs targeting outer membrane protein (omp) A and B genes were done by using previously described primers (3). A negative control (sterile water and DNA from a sterile biopsy specimen) and a positive control (R. montanensis DNA) were included in each test. Amplicon sequencing confirmed R. conorii ISF strain DNA in the 2 skin samples and in the blood sample of patient 1. For both patients, the sequence homology to R. conorii ISF strain DNA was 99% for ompB gene (833 pb) and 100% for ompA (596 pb) (GenBank accession nos. AF123712.1 and AY197564.1, respectively). Serologic testing performed by a microimmunofluorescence assay yielded negative results for the first blood samples. A second blood sample was tested only for patient 2 and showed immunoglobulin M titers of 64 and immunoglobulin G titers of 128.

We demonstrated human infection caused by R. conorii ISF strain in Tunisia. This strain has been recently suggested for classification with 3 others as a subspecies within the species R. conorii on the basis of multilocus sequence typing (4). ISF was first described in Israel where it is endemic (5). The disease appears to be more widely spread in the Mediterranean countries than first believed because cases from Italy and Portugal have been reported (6,7). Recently, a patient from Switzerland with confirmed ISF was suspected to be infected in Libya (8). One patient in our study may also have been infected during his stay in Libya. Thus, geographic distribution of ISF seems to be extended to all Mediterranean countries and not limited to Israel, Italy, and Portugal. Its distribution areas probably overlap with those of MSF because the 2 infections share the same vector, the dog tick (Rhipicephalus sanguineus) (9). Although a history of tick bite could not be documented from the recorded anamnesis data, contact with dogs was noted in our cases. Furthermore, the 2 cases were diagnosed during the same month (September), corresponding to seasonal fluctuations generally observed for MSF in our region. Although 1 of our patients reported recent travel, the second patient affirmed he had not left his locality; thus, endemicity of ISF in our region in Tunisia is possible.

De Sousa et al. reported the differences between patients infected with R. conorii Malish and ISF strains (10). The characteristic eschar at the site of the tick bite was markedly less noted in ISF. The absence of this eschar has been also described in other studies (9,10). In our report, patients were treated with a delay of 10 and 6 days and neither patient died, but 1 patient did experience severe illness. Our observations suggest that the supposed ability of the ISF Rickettsia sp. to cause more severe illness is not ascribed to late diagnosis but may be due to more virulent strains, as suspected by De Sousa (10).

Finally, PCR applied to whole blood and tissue samples was more effective in diagnosing these cases earlier than serology because antibodies appear to have slow kinetics. Physicians should be alert to the possibility of ISF in febrile patients in our region, especially because fatal outcomes of this infection have been reported (8).

Top

Acknowledgments

We thank Didier Raoult for providing antigens used in the serologic analysis and the R. montanensis DNA used as a positive control in PCR.

All work was financed by our research laboratory “MPH, Habib Bourguiba University Hospital.”

Top

Abir ZnazenComments to Author , Boussayma Hammami, Dorra Lahiani, Mounir Ben Jemaa, and Adnene Hammami
Author affiliations: Author affiliations: Habib Bourguiba University Hospital, Sfax, Tunisia (A. Znazen, A. Hammami) and Hédi Chaker University Hospital, Sfax (D. Lahiani, M. Ben Jemaa, B. Hammami)

Top

References

  1. Znazen  A, Rolain  JM, Hammami  A, Jemaa  MB, Raoult  D. Rickettsia felis infection, Tunisia. Emerg Infect Dis. 2006;12:13840.PubMedGoogle Scholar
  2. Letaïef  AO, Kaabia  N, Chakroun  M, Khalifa  M, Bouzouaia  N, Jemni  L. Clinical and laboratory features of murine typhus in central Tunisia: a report of seven cases. Int J Infect Dis. 2005;9:3314. DOIPubMedGoogle Scholar
  3. Fournier  PE, Zhu  Y, Ogata  H, Raoult  D. Use of highly variable intergenic spacer sequences for multispacer typing of Rickettsia conorii strains. J Clin Microbiol. 2004;42:575766. DOIPubMedGoogle Scholar
  4. Zhu  Y, Fournier  PE, Eremeeva  M, Raoult  D. Proposal to create subspecies of Rickettsia conorii based on multi-locus sequence typing and an emended description of Rickettsia conorii. BMC Microbiol. 2005 14; 5:11. PubMed
  5. Mumcuoglu  KY, Keysary  A, Gilead  L. Mediterranean spotted fever in Israel: a tick-borne disease. Isr Med Assoc J. 2002;4:449.PubMedGoogle Scholar
  6. De Sousa  R, Ismail  N, Dória-Nóbrega  S, Costa  P, Abreu  T, França  A, The presence of eschars, but not greater severity, in Portuguese patients infected with Israeli spotted fever. Ann N Y Acad Sci. 2005;1063:197202. DOIPubMedGoogle Scholar
  7. Giammanco  GM, Vitale  G, Mansueto  S, Capra  G, Caleca  MP, Ammatuna  P. Presence of Rickettsia conorii subsp. israelensis, the causative agent of Israeli spotted fever, in Sicily, Italy, ascertained in a retrospective study. J Clin Microbiol. 2005;43:602731. DOIPubMedGoogle Scholar
  8. Boillat  N, Genton  B, D’Acremont  V, Raoult  D, Greub  G. Fatal case of Israeli spotted fever after Mediterranean cruise. Emerg Infect Dis. 2008;14:19446. DOIPubMedGoogle Scholar
  9. Giammanco  GM, Mansueto  S, Ammatuna  P, Vitale  G. Israeli spotted fever Rickettsia in Sicilian Rhipicephalus sanguineus ticks. Emerg Infect Dis. 2003;9:8923.PubMedGoogle Scholar
  10. De Sousa  R, França  A, Doria Noberga  S, Belo  A, Amaro  M, Abreu  T, Host and microbial risk factors and pathophysiology of fatal Rickettsia conorii infection in Portuguese patients. J Infect Dis. 2008;198:57685. DOIPubMedGoogle Scholar

Top

Cite This Article

DOI: 10.3201/eid1707.101648

Related Links

Top

Table of Contents – Volume 17, Number 7—July 2011

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Abir Znazen, Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia

Send To

10000 character(s) remaining.

Top

Page created: August 18, 2011
Page updated: August 18, 2011
Page reviewed: August 18, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external