Volume 17, Number 8—August 2011
Research
Early Warning System for West Nile Virus Risk Areas, California, USA
Figure 2

Figure 2. Schematic of the Dynamic Continuous-Area Space-Time (DYCAST) procedure, illustrating domains of Knox test (16,17) implemented at the center of an individual ≈0.44 km2 grid cell. The 2.4-km (1.5-mi) radius of the spatial domain represents twice the daily feeding distance (14) of Culex spp. mosquitoes in California (18) and is equivalent to the effective flight range of these vectors (19,20). The 21-day temporal domain accounts for the extrinsic incubation period of West Nile virus (21) and 2 avian infection cycles of 7 days each (5,14,22). These bounds define the spatiotemporal domain, within which reports of dead birds (asterisks) are evaluated for proximity in space (0.40 km) and time (3 days) (small white cylinder). Statistical significance of dead bird report pairing is assessed by using random simulations (p<0.1) (15). Procedure is repeated at other cell centers to create a continuous surface of risk.
References
- Centers for Disease Control and Prevention. Surveillance for human West Nile virus disease—United States, 1999–2008. Surveillance Summaries. MMWR Morb Mortal Wkly Rep. 2010;59:SS–2 [cited 2010 Apr 2]. http://www.cdc.gov/mmwr/pdf/ss/ss5902.pdf
- California Department of Health Services. Vector-borne diseases in California, 2003: annual report. Sacramento (CA): The Department. 2004 Aug [cited 2011 Feb 28]. http://www.cdph.ca.gov/programs/vbds/Documents/VBDSAnnualReport03.pdf
- California Department of Public Health. Human West Nile virus activity, California, 2004–2010. Updated 2010 Sep 3. Sacramento (CA): The Department; 2010 [cited 2010 Sep 05]. http://westnile.ca.gov/downloads.php?download_id=1792&filename=2004-2010_WNV_Case_Summary-13.pdf
- Turell MJ, Sardelis MR, Dohm DJ, O’Guinn ML. Potential North American vectors of West Nile virus. Ann N Y Acad Sci. 2001;951:317–24. DOIPubMedGoogle Scholar
- Wheeler SS, Barker CM, Fang Y, Armijos MV, Carroll BD, Husted S, Differential impact of West Nile virus on California birds. Condor. 2009;111:1–20. DOIPubMedGoogle Scholar
- McCaughey K, Miles SQ, Woods L, Chiles RE, Hom A, Kramer VL, The California West Nile virus dead bird surveillance program. Proceedings of the Mosquito and Vector Control Association of California. 2003;71:38–43.
- California Department of Public Health, Mosquito and Vector Control Association of California, University of California. California mosquito-borne virus surveillance and response plan. Sacramento (CA): The Department. Vector-Borne Disease Section. 2009 Apr [cited 2011 Feb 28]. http://www.cdph.ca.gov/HealthInfo/discond/Documents/2009MosqSurvRespPlan.pdf
- Eidson M, Schmit K, Hagiwara Y, Anand M, Backenson PB, Gotham I, Dead crow densities and human cases of West Nile virus, New York State, 2000. Emerg Infect Dis. 2001;7:662–4. DOIPubMedGoogle Scholar
- Eidson M, Schmit K, Hagiwara Y, Anand M, Backenson PB, Gotham I, Dead crow density and West Nile virus monitoring, New York. Emerg Infect Dis. 2005;11:1370–5.PubMedGoogle Scholar
- Johnson GD, Eidson M, Schmit K, Ellis A, Kulldorff M. Geographic prediction of human onset of West Nile virus using dead crow clusters: an evaluation of year 2002 data in New York State. Am J Epidemiol. 2006;163:171–80. DOIPubMedGoogle Scholar
- Mostashari F, Kulldorff M, Hartman JJ, Miller JR, Kulasekera V. Dead bird clusters as an early warning system for West Nile virus activity. Emerg Infect Dis. 2003;9:641–6.PubMedGoogle Scholar
- Watson JT, Jones RC, Gibbs K, Paul W. Dead crow reports and location of human West Nile virus cases, Chicago, 2002. Emerg Infect Dis. 2004;10:938–40.PubMedGoogle Scholar
- Weingartl HM, Neufeld JL, Copps J, Marszal P. Experimental West Nile virus infection in blue jays (Cyanocitta cristata) and crows (Corvus brachyrhynchos). Vet Pathol. 2004;41:362–70. DOIPubMedGoogle Scholar
- Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:37–46. DOIGoogle Scholar
- Gerstman BB. Epidemiology kept simple. 1st ed. New York: John Wiley and Sons, Inc.; 1998.
- Hom A, Bonilla D, Kjemtrup A, Kramer VL, Cahoon-Young B, Barker CM, Surveillance for mosquito-borne encephalitis virus activity and human disease, including West Nile virus, in California, 2005. Proceedings of the Mosquito and Vector Control Association of California. 2006;74:43–55.
- Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. West Nile virus: clinical description. 2004 Sep 29 [cited 2011 Feb 28]. http://www.cdc.gov/ncidod/dvbid/westnile/clinicians/pdf/wnv-clinicaldescription
- California Department of Health Services. California arbovirus surveillance bulletin #21. Updated 2005 Jul 8. Sacramento (CA): The Department; 2005 [cited 2011 Feb 28].www.westnile.ca.gov/downloads.php?download_id=538&filename=arbobulletin_2005_21.pdf
- US Geological Survey. West Nile virus, human, 2005. Updated 2007 May 1. Reston (VA): The Survey; 2006 [cited 2011 Feb 28]. http://diseasemaps.usgs.gov/2005/wnv/wnv_us_human.html
- Elnaiem DE, Kelley K, Wright S, Laffey R, Yoshimura G, Reed M, Impact of aerial spraying of pyrethrin insecticide on Culex pipiens and Culex tarsalis (Diptera: Culicidae) abundance and West Nile virus infection rates in an urban/suburban area of Sacramento County, California. J Med Entomol. 2008;45:751–7. DOIPubMedGoogle Scholar
- Carney RM, Husted S, Jean C, Glaser C, Kramer V. Efficacy of aerial spraying of mosquito adulticide in reducing incidence of West Nile virus, California, 2005. Emerg Infect Dis. 2008;14:747–54. DOIPubMedGoogle Scholar
- Eidson M. “Neon needles” in a haystack: the advantages of passive surveillance for West Nile virus. Ann N Y Acad Sci. 2001;951:38–53. DOIPubMedGoogle Scholar
- Reisen WK, Fang Y, Martinez VM. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol. 2005;42:367–75. DOIPubMedGoogle Scholar
- Reisen WK, Barker CM, Carney R, Lothrop HD, Wheeler S, Wilson JL, Role of corvids in epidemiology of West Nile virus in southern California. J Med Entomol. 2006;43:356–67. DOIPubMedGoogle Scholar
- Ward MP, Raim A, Yaremych-Hamer S, Lampman R, Novak RJ. Does the roosting behavior of birds affect transmission dynamics of West Nile virus? Am J Trop Med Hyg. 2006;75:350–5.PubMedGoogle Scholar
- Ruiz MO, Tedesco C, McTighe TJ, Austin C, Kitron U. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. Int J Health Geogr. 2004;3:8. DOIPubMedGoogle Scholar
- Ruiz MO, Walker ED, Foster ES, Haramis LD, Kitron UD. Association of West Nile virus illness and urban landscapes in Chicago and Detroit. Int J Health Geogr. 2007;6:10. DOIPubMedGoogle Scholar
- Barber LM, Schleier III JJ, Peterson RKD. Economic cost analysis of West Nile virus outbreak, Sacramento County, California, USA, 2005. Emerg Infect Dis. 2010;16:480–6. DOIPubMedGoogle Scholar
1Current affiliation: Brown University, Providence, Rhode Island, USA.
2Current affiliation: University of British Columbia, Vancouver, British Columbia, Canada.