Volume 18, Number 12—December 2012
Research
Reservoir Competence of Wildlife Host Species for Babesia microti
Table 3
Species | Sequence, 5′ → 3′ |
---|---|
Didelphis virginiana A20030_21 | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGTATTCAACGAGTTTTTTCCTTGGC |
Procyon lotor 506_10 | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGTATTCAACGAGTTTTTTCCTTGGC |
Babesia microti raccoon isolate, USA (AY144701) | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGTATTCAACGAGTTTTTTCCTTGGC |
B. microti raccoon isolate, Japan (AB197940) | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGTATTCAACGAGTTTTTTCCTTGGC |
Blarina brevicauda BB3_10 | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGCATTCAACGAG-TTTTTCCTTGGC |
Catharus fuscescens, 2341–01870_17 | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGCATTCAACGAG-TTTTTCCTTGGC |
Hylocichla mustelina 1951–10576_14 | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGCATTCAACGAG-TTTTTCCTTGGC |
Peromyscus leucopus A20003_10 | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGCATTCAACGAG-TTTTTCCTTGGC |
Sciurus carolinensis E412_14 | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGCATTCAACGAG-TTTTTCCTTGGC |
Tamias striatus H1037_11 | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGCATTCAACGAG-TTTTTCCTTGGC |
B. microti GI strain (AF231348) | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGCATTCAACGAG-TTTTTCCTTGGC |
B. microti Jena/Germany isolate (EF413181) | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGCATTCAACGAG-TTTTTCCTTGGC |
B. microti Kobe isolate (AB032434) | AAGGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGGCTGCACGCGCGCTACACTGATGCATTCAACGAG--TTTTCCTTGGC |
*Sequences for zoonotic isolates were obtained from Gray et al. (4). The 85–86-bp sequence is the region of 18S rDNA between primers smbaJF and smbaKR. Consistent 2-bp differences between ticks collected from different host species are indicated in boldface. The empty row separates sequences with basepair differences. Accessions nos. for GenBank sequences are indicated in parentheses after isolate names. GI, American isolate.
References
- Homer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH. Babesiosis. Clin Microbiol Rev. 2000;13:451–69. DOIPubMedGoogle Scholar
- Kogut SJ, Thill CD, Prusinski MA, Lee JH, Backenson PB, Coleman JL, Babesia microti, upstate New York. Emerg Infect Dis. 2005;11:476–8. DOIPubMedGoogle Scholar
- Joseph JT, Roy SS, Shams N, Visintainer P, Nadelman RB, Hosur S, Babesiosis in Lower Hudson Valley, New York, USA. Emerg Infect Dis. 2011;17:843–7. DOIPubMedGoogle Scholar
- Gray J, Zintl A, Hildebrandt A, Hunfeld K-P, Weiss L. Zoonotic babesiosis: overview of the disease and novel aspects of pathogen identity. Ticks Tick Borne Dis. 2010;1:3–10. DOIPubMedGoogle Scholar
- Gray J, von Stedingk LV, Gürtelschmid M, Granström M. Transmission studies of Babesia microti in Ixodes ricinus ticks and gerbils. J Clin Microbiol. 2002;40:1259–63. DOIPubMedGoogle Scholar
- Oliveira MR, Kreier JP. Transmission of Babesia microti using various species of ticks as vectors. J Parasitol. 1979;65:816–7. DOIPubMedGoogle Scholar
- Tokarz R, Jain K, Bennett A, Briese T, Lipkin WI. Assessment of polymicrobial infections in ticks in New York State. Vector Borne Zoonotic Dis. 2010;10:217–21. DOIPubMedGoogle Scholar
- Adelson ME, Rao R-VS, Tilton RC, Cabets K, Eskow E, Fein L, Prevalence of Borrelia burgdorferi, Bartonella spp., Babesia microti, and Anaplasma phagocytophila in Ixodes scapularis ticks collected in northern New Jersey. J Clin Microbiol. 2004;42:2799–801. DOIPubMedGoogle Scholar
- Holman MS, Caporale DA, Goldberg J, Lacombe E, Lubelczyk C, Rand PW, Anaplasma phagocytophilum, Babesia microti, and Borrelia burgdorferi in Ixodes scapularis, southern coastal Maine. Emerg Infect Dis. 2004;10:744–6. DOIPubMedGoogle Scholar
- Spielman A, Levine JF, Wilson ML. Vectorial capacity of North American Ixodes ticks. Yale J Biol Med. 1984;57:507–13.PubMedGoogle Scholar
- Walk ST, Xu G, Stull JW, Rich SM. Correlation between tick density and pathogen endemicity, New Hampshire. Emerg Infect Dis. 2009;15:585–7. DOIPubMedGoogle Scholar
- Ostfeld RS. Lyme disease: the ecology of a complex system. New York: Oxford University Press; 2011.
- Piesman J, Mather TN, Dammin GJ, Telford SR, Lastavica CC, Spielman A. Seasonal variation of transmission risk of Lyme disease and human babesiosis. Am J Epidemiol. 1987;126:1187–9.PubMedGoogle Scholar
- Leiby DA. Transfusion-transmitted Babesia spp.: bull’s-eye on Babesia microti. Clin Microbiol Rev. 2011;24:14–28. DOIPubMedGoogle Scholar
- Healy GR, Spielman A, Gleason N. Human babesiosis: reservoir in infection on Nantucket Island. Science. 1976;192:479–80. DOIPubMedGoogle Scholar
- Spielman A, Etkind P, Piesman J, Ruebush TK II, Juranek DD, Jacobs MS. Reservoir hosts of human babesiosis on Nantucket Island. Am J Trop Med Hyg. 1981;30:560–5.PubMedGoogle Scholar
- Telford SR, Spielman A. Reservoir competence of white-footed mice for Babesia microti. J Med Entomol. 1993;30:223–7.PubMedGoogle Scholar
- Beck R, Vojta L, Curkovic S, Mrljak V, Margaletic J, Habrun B. Molecular survey of Babesia microti in wild rodents in central Croatia. Vector Borne Zoonotic Dis. 2011;11:81–3. DOIPubMedGoogle Scholar
- Duh D, Petrovec M, Trilar T, Avsic-Zupanc T. The molecular evidence of Babesia microti infection in small mammals collected in Slovenia. Parasitology. 2003;126:113–7. DOIPubMedGoogle Scholar
- Rar VA, Epikhina TI, Livanova NN, Panov VV. Genetic diversity of Babesia in Ixodes persulcatus and small mammals from North Ural and West Siberia, Russia. Parasitology. 2011;138:175–82. DOIPubMedGoogle Scholar
- Saito-Ito A, Kasahara M, Kasai M, Dantrakool A, Kawai A, Fujita H, Survey of Babesia microti infection in field rodents in Japan: records of the Kobe-type in new foci and findings of a new type related to the Otsu-type. Microbiol Immunol. 2007;51:15–24.PubMedGoogle Scholar
- Zamoto A, Tsuji M, Wei Q, Cho SH, Shin EH, Kim TS, Epizootiologic survey for Babesia microti among small wild mammals in northeastern Eurasia and a geographic diversity in the beta-tubulin gene sequences. J Vet Med Sci. 2004;66:785–92. DOIPubMedGoogle Scholar
- Zamoto A, Tsuji M, Kawabuchi T, Wei Q, Asakawa M, Ishihara C. US-type Babesia microti isolated from small wild mammals in eastern Hokkaido, Japan. J Vet Med Sci. 2004;66:919–26. DOIPubMedGoogle Scholar
- Telford SR, Mather TN, Adler GH, Spielman A. Short-tailed shrews as reservoirs of the agents of Lyme disease and human babesiosis. J Parasitol. 1990;76:681–3. DOIPubMedGoogle Scholar
- Birkenheuer AJ, Marr HS, Hladio N, Acton AE. Molecular evidence of prevalent dual piroplasma infections in North American raccoons (Procyon lotor). Parasitology. 2008;135:33–7. DOIPubMedGoogle Scholar
- Birkenheuer AJ, Horney B, Bailey M, Scott M, Sherbert B, Catto V, Babesia microti-like infections are prevalent in North American foxes. Vet Parasitol. 2010;172:179–82. DOIPubMedGoogle Scholar
- Tsuji M, Zamoto A, Kawabuchi T, Kataoka T, Nakajima R, Asakawa M, Babesia microti–like parasites detected in Eurasian red squirrels (Sciurus vulgaris orientis) in Hokkaido, Japan. J Vet Med Sci. 2006;68:643–6. DOIPubMedGoogle Scholar
- Bown KJ, Lambin X, Telford G, Heyder-Bruckner D, Ogden NH, Birtles RJ. The common shrew (Sorex araneus): a neglected host of tick-borne infections? Vector Borne Zoonotic Dis. 2011;11:947–53. DOIPubMedGoogle Scholar
- Franke J, Fritzsch J, Tomaso H, Straube E, Dorn W, Hildebrandt A. Coexistence of pathogens in host-seeking and feeding ticks within a single natural habitat in central Germany. Appl Environ Microbiol. 2010;76:6829–36. DOIPubMedGoogle Scholar
- Franke J, Meier F, Moldenhauer A, Straube E, Dorn W, Hildebrandt A. Established and emerging pathogens in Ixodes ricinus ticks collected from birds on a conservation island in the Baltic Sea. Med Vet Entomol. 2010;24:425–32. DOIPubMedGoogle Scholar
- Hildebrandt A, Franke J, Meier F, Sachse S, Dorn W, Straube E. The potential role of migratory birds in transmission cycles of Babesia spp., Anaplasma phagocytophilum, and Rickettsia spp. Ticks Tick Borne Dis. 2010;1:105–7. DOIPubMedGoogle Scholar
- Keesing F, Holt RD, Ostfeld RS. Effects of species diversity on disease risk. Ecol Lett. 2006;9:485–98. DOIPubMedGoogle Scholar
- LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci U S A. 2003;100:567–71. DOIPubMedGoogle Scholar
- Keesing F, Brunner J, Duerr S, Killilea M, LoGiudice K, Schmidt K, Hosts as ecological traps for the vector of Lyme disease. Proc Biol Sci. 2009;276:3911–9. DOIPubMedGoogle Scholar
- Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F. Climate, deer, rodents, and acorns as determinants of variation in Lyme disease risk. PLoS Biol. 2006;4:e145. DOIPubMedGoogle Scholar
- Goethert HK, Telford SR. What is Babesia microti? Parasitology. 2003;127:301–9. DOIPubMedGoogle Scholar
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.PubMedGoogle Scholar
- Nakajima R, Tsuji M, Oda K, Zamoto-Niikura A, Wei Q, Kawabuchi-Kurata T, Babesia microti–group parasites compared phylogenetically by complete sequencing of the CCTη gene in 36 isolates. J Vet Med Sci. 2009;71:55–68. DOIPubMedGoogle Scholar
- Goethert HK, Cook JA, Lance EW, Telford SR. Fay and Rausch 1969 revisited: Babesia microti in Alaskan small mammals. J Parasitol. 2006;92:826–31. DOIPubMedGoogle Scholar
Page created: November 20, 2012
Page updated: November 20, 2012
Page reviewed: November 20, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.