Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 5—May 2012
Letter

Electronic School Absenteeism Monitoring and Influenza Surveillance, Hong Kong

Cite This Article

To the Editor: Potentially useful public health interventions, such as school closure, need to be introduced in a timely manner during the evolution of an ongoing epidemic to substantially affect community transmission (1,2). In most traditional surveillance systems that include health care use data, however, considerable delays occur between data collection and feedback, which leads to suboptimal and untimely information for guiding evidence-based public health decisions. Newer syndromic surveillance approaches have been attempted to improve timeliness by targeting earlier events in the health-seeking pathway and by promoting real-time collection and processing of surveillance data by using modern information technology (3,4). Building on an existing platform of an electronic school management system, we developed an automated school absenteeism surveillance system for influenza-like illness (ILI) in Hong Kong and evaluated its performance using data collected from March 2008 through June 2011. The Institutional Review Board of the University of Hong Kong/Hospital Authority, Hong Kong West Cluster, approved the study.

We collaborated with a commercial vendor that develops and provides online learning platforms and management systems for educational institutions, including 337 primary and secondary schools in Hong Kong, attended by children 6–18 years of age. Invitations to participate in the new absenteeism system were sent to all schools subscribing to the electronic school management system, and 62 schools throughout Hong Kong were recruited in phases during the study period. We began with 18 schools (17,255 students) from February through June 2008, then expanded to 45 schools (37,087 students) in 2008–09, to 50 schools (41,765 students) in 2009–10, and to 62 schools (49,425 students) in 2010–11.

The absenteeism system worked as follows. A student identification smart card was issued to each student in all participating schools, and students were required to swipe their cards over a sensor at the school entrance as an electronic record of attendance, which replaced a traditional paper-based roll call. Reasons for absence, including ILI, were asked in telephone calls in a subset (37%) of schools, and answers were manually entered into the system by teachers. Daily aggregated data, including the total number of students and number of absentees in each grade (stratified by reason for absence), were compiled each afternoon. Individual children were not identifiable. Data cleaning, aggregation, and analysis and generation of reports were automated with R version 2.12.1 (R Foundation for Statistical Computing, Vienna, Austria). Weekly overall absenteeism rates were calculated as the total number of absentees divided by the total number of students at all schools. Regular weekly and ad hoc reports of absenteeism patterns, with an interpretation of the overall influenza disease activity in the community, were distributed to all participating schools through the same school management system and disseminated to the general public through an existing influenza surveillance dashboard (5).

Figure

Thumbnail of Influenza surveillance data, Hong Kong, February 23, 2008–June 18, 2011. A) Weekly overall school absenteeism rate. B) Weekly influenza-like illness (ILI)–specific school absenteeism rate. C) Weekly ILI (defined as fever plus cough or sore throat) consultation rates in sentinel networks of outpatient clinics in the private sector. D) Proportion of influenza A and B virus isolations (by date of collection) among all specimens submitted to the reference laboratory for Hong Kong Island

Figure. . . Influenza surveillance data, Hong Kong, February 23, 2008–June 18, 2011. A) Weekly overall school absenteeism rate. B) Weekly influenza-like illness (ILI)–specific school absenteeism rate. C) Weekly ILI (defined as...

The school absenteeism rates and reference data from 2 existing traditional surveillance systems in Hong Kong during March 2008–June 2011 covered a total of 7 influenza seasons (Figure). Data from both systems were from all age groups in the entire territory. The laboratory virus isolation rate as a reference standard highlighted the typical seasonality of influenza in Hong Kong, which peaked around February during winter and around August during summer, in each year (Figure, panel D) (6). Clear and sharp peaks were detectable from both the overall and ILI-specific data during most of these influenza seasons (Figure, panels A, B), which generally occurred 1–3 weeks ahead of the peaks in the laboratory data (range 1 to 5 and −1 to 4 weeks; median 3 and 0.5 weeks for overall and ILI data, respectively). The data generally showed much sharper peaks than the outpatient sentinel data, possibly related to better coverage of disease activity in the community, in contrast to the sentinel data, which captured only episodes leading to visits to outpatient clinics (7). Limitations of our school absenteeism data included relatively lower perceived sensitivity of the ILI-specific absenteeism rate (because data are provided only by 37% of participating schools) and the presence of data gaps during school holidays or school closure as a result of public health measures to mitigate seasonal influenza in March 2008 (1) and pandemic influenza in June 2009 (2).

This study demonstrated the feasibility and potential benefit of using automatically captured school absenteeism data as a complementary data stream for influenza surveillance. Real-time monitoring of school absenteeism, an early event in the health care–seeking pathway, can improve situational awareness and help inform appropriate public health decisions and interventions in a more timely and evidence-based manner. Electronically capturing data from preexisting smart card systems is an attractive and cost-effective option that does not require substantial additional resources, systems, or labor in contrast to some other approaches (810). The increasing popularity of smart card technology in various situations might also provide potential opportunities for innovative surveillance systems.

Top

Acknowledgments

We acknowledge the Public Health Laboratory Service, the Hospital Authority, and the Centre for Health Protection, Department of Health of the Hong Kong Special Administrative Region Government, for publishing influenza surveillance data online. We thank the Department of Microbiology, Queen Mary Hospital, Hong Kong, for providing reference laboratory data. In addition, we are grateful to BroadLearning Education (Asia) Ltd and the participating schools for providing absenteeism data.

This work received financial support from the Research Fund for the Control of Infectious Diseases (grant no. 11101092), and the Area of Excellence Scheme of the University of Hong Kong Grants Committee (grant no. AoE/M-12/06). D.K.M.I. received research funding from Hoffmann-La Roche Inc., and B.J.C. received research funding from MedImmune Inc.

Top

Calvin K.Y. Cheng, Benjamin J. Cowling, Eric H.Y. Lau, Lai Ming Ho, Gabriel M. Leung, and Dennis K.M. IpComments to Author 
Author affiliations: The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China

Top

References

  1. Wu  JT, Cowling  BJ, Lau  EH, Ip  DK, Ho  LM, Tsang  T, School closure and mitigation of pandemic (H1N1) 2009, Hong Kong. Emerg Infect Dis. 2010;16:53841. DOIPubMedGoogle Scholar
  2. Cowling  BJ, Lau  EH, Lam  CL, Cheng  CK, Kovar  J, Chan  KH, Effects of school closures, 2008 winter influenza season, Hong Kong. Emerg Infect Dis. 2008;14:16602. DOIPubMedGoogle Scholar
  3. Cheng  CK, Lau  EH, Ip  DK, Yeung  AS, Ho  LM, Cowling  BJ. A profile of the online dissemination of national influenza surveillance data. BMC Public Health. 2009;9:339. DOIPubMedGoogle Scholar
  4. Brownstein  JS, Freifeld  CC, Chan  EH, Keller  M, Sonricker  AL, Mekaru  SR, Information technology and global surveillance of cases of 2009 H1N1 influenza. N Engl J Med. 2010;362:17315. DOIPubMedGoogle Scholar
  5. Cheng  CK, Ip  DK, Cowling  BJ, Ho  LM, Leung  GM, Lau  EH. Digital dashboard design using multiple data streams for disease surveillance with influenza surveillance as an example. J Med Internet Res. 2011;13:e85. DOIPubMedGoogle Scholar
  6. Cowling  BJ, Wong  IO, Ho  LM, Riley  S, Leung  GM. Methods for monitoring influenza surveillance data. Int J Epidemiol. 2006;35:131421. Epub 2006 Aug 22. DOIPubMedGoogle Scholar
  7. Leung  GM, Wong  IO, Chan  WS, Choi  S, Lo  SV. Health Care Financing Study G. The ecology of health care in Hong Kong. Soc Sci Med. 2005;61:57790. DOIPubMedGoogle Scholar
  8. Schmidt  WP, Pebody  R, Mangtani  P. School absence data for influenza surveillance: a pilot study in the United Kingdom. Euro Surveill. 2010;15:pii:19467.PubMedGoogle Scholar
  9. Mook  P, Joseph  C, Gates  P, Phin  N. Pilot scheme for monitoring sickness absence in schools during the 2006/07 winter in England: can these data be used as a proxy for influenza activity? Euro Surveill. 2007;12:E112.PubMedGoogle Scholar
  10. Short  VL, Marriott  CK, Ostroff  S, Waller  K. Description and evaluation of the 2009–2010 Pennsylvania Influenza Sentinel School Monitoring System. Am J Public Health. 2011;101:217883. Epub 2011 May 12. DOIPubMedGoogle Scholar

Top

Figure

Top

Cite This Article

DOI: 10.3201/eid1805.111796

Related Links

Top

Table of Contents – Volume 18, Number 5—May 2012

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Dennis K M Ip, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Rd, Pokfulam, Hong Kong

Send To

10000 character(s) remaining.

Top

Page created: April 06, 2012
Page updated: April 06, 2012
Page reviewed: April 06, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external