Volume 18, Number 5—May 2012
Letter
Epidemic Genotype of Coxiella burnetii among Goats, Sheep, and Humans in the Netherlands
Table A1
Coxiella burnetii MST genotypes from humans and ruminants sampled during the Q fever outbreak, the Netherlands, 2008–2010*
Sample no. | Host | Source | Location | Year | Ct value | MST genotype† | Cox2 | Cox5 | Cox18 | Cox20 | Cox22 | Cox37 | Cox51 | Cox56 | Cox57‡ | Cox61 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q001 | Sheep | Vaginal swab | 1 | 2008 | 25.7 | 33 | 7 | 5 | 1 | –§ | 5 | 9 | 9 | 4 | 3 | 2 |
Q002 | Sheep | Vaginal swab | 1 | 2008 | 16.3 | 33 | 7 | 5 | 1 | 6 | 5 | 9 | 9 | 4 | 3 | 2 |
Q003 | Sheep | Vaginal swab | 1 | 2008 | 18.8 | 33 | 7 | 5 | 1 | 6 | 5 | 9 | 9 | 4 | 3 | 2 |
Q004 | Lamb | Throat swab | 1 | 2008 | 27.9 | 33 | 7 | 5 | 1 | 6 | 5 | 9 | 9 | 4 | 3 | 2 |
Q005 | Lamb | Throat swab | 1 | 2008 | 29.9 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | 3 | 2 |
Q006 | Lamb | Throat swab | 1 | 2008 | 28.9 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | 3 | 2 |
Q050 | Human | BAL | 2 | 2009 | 22.4 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | 3 | 2 |
Q052 | Human | Sputum | 3 | 2009 | 20.7 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | 3 | 2 |
Q054 | Human | Sputum | 3 | 2009 | 19.4 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | 3 | 2 |
Q057 | Human | Sputum | 3 | 2009 | 20.6 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | 3 | 2 |
Q063 | Human | Sputum | 4 | 2009 | 29.6 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | – | 2 |
Q066 | Human | Sputum | 5 | 2009 | 27.7 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | – | 2 |
Q076 | Human | Aorta valve | 6 | 2009 | 17.0 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | 3 | 2 |
Q084 | Human | Aorta valve | 7 | 2008 | 17.0 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | 3 | 2 |
Q107 | Human | Aorta valve | 5 | 2010 | 9.0 | 33 | 7 | 5 | 1 | 6 | 5 | 9 | 9 | 4 | 3 | 2 |
Q085 | Goat | Placenta | 8 | 2009 | 18.0 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | 3 | 2 |
Q087 | Goat | Placenta | 9 | 2009 | 18.1 | 33 | 7 | 5 | 1 | – | 5 | 9 | 9 | 4 | 3 | 2 |
Q086 | Goat | Placenta | 9 | 2009 | 18.0 | 20 | 3 | 2 | 6 | – | 5 | 4 | 4 | 10 | 6 | 5 |
Q097 | Cattle | Swab | 10 | 2009 | 19.0 | 20 | 3 | 2 | 6 | – | 5 | 4 | 4 | 10 | 6 | 5 |
Q090 | Cattle | Milk | 11 | 2010 | 32.0 | 20 | 3 | 2 | 6 | – | 5 | 4 | 4 | 10 | – | 5 |
Q091 | Cattle | Milk | 12 | 2010 | 32.6 | 20 | 3 | 2 | 6 | – | 5 | 4 | 4 | 10 | – | 5 |
Q093 | Cattle | Milk | 13 | 2010 | 31.7 | 20 | 3 | 2 | 6 | – | 5 | 4 | 4 | 10 | – | 5 |
Q096 | Cattle | Milk | 14 | 2010 | 33.4 | 20 | 3 | 2 | 6 | – | 5 | 4 | 4 | 10 | – | 5 |
Q123 | Cattle | Milk | 15 | 2010 | 31.6 | 20 | 3 | 2 | 6 | – | 5 | 4 | 4 | 10 | – | 5 |
Q056 | Human | BAL | 16 | 2010 | 28.2 | New | 3 | 3 | 2 | – | – | 9 | – | – | – | – |
Dugway | NA | CP000733# | NA | NA | NA | 20 | 3 | 2 | 6 | 1 | 5 | 4 | 4 | 10 | 6 | 5 |
RSA331 | NA | CP000890# | NA | NA | NA | 18 | 3 | 8 | 1 | 6 | 3 | 4 | 7 | 9 | 6 | 3 |
RSA493 | NA | AE016828# | NA | NA | NA | 16 | 3 | 8 | 5 | 3 | 4 | 1 | 6 | 7 | 6 | 5 |
CbuG Q212 | NA | CP001019# | NA | NA | NA | 21 | 2 | 1 | 4 | 6 | 2 | 3 | 1 | 11 | 1 | 1 |
CbuK Q154 | NA | CP001020# | NA | NA | NA | 8 | 5 | 4 | 2 | 5 | 1 | 5 | 3 | 3 | 4 | 4 |
*MST, multispacer sequence typing; Ct, cycle threshold; BAL, bronchoalveolar lavage; NA, not applicable.
†MST genotypes were identified by using the MST database (http://ifr48.timone.univ-mrs.fr/MST_Coxiella/mst).
‡Result obtained by using improved amplification primers for Cox57 (9).
§ –, no result was obtained. The lack of results may be explained by the significantly larger PCR product that is targeted, low quantity of DNA or to overall poor performance of the PCR amplification.
¶This combination of 4 alleles has not been observed and justifies the assignment of a new MST genotype.
#GenBank accession number.
References
- Roest HIJ, Tilburg JJHC, van der Hoek W, Vellema P, van Zijderveld FG, Klaassen CHW, The Q fever epidemic in the Netherlands: history, onset, response and reflection. Epidemiol Infect. 2011;139:1–12. DOIPubMedGoogle Scholar
- Huijsmans CJJ, Schellekens JJA, Wever PC, Toman R, Savelkoul PHM, Janse I, Single-nucleotide-polymorphism-genotyping of Coxiella burnetii during a Q fever outbreak in the Netherlands. Appl Environ Microbiol. 2011;77:2051–7. DOIPubMedGoogle Scholar
- Klaassen CHW, Nabuurs-Franssen MH, Tilburg JJHC, Hamans MAWM, Horrevorts AM. Multigenotype Q fever outbreaks, the Netherlands. Emerg Infect Dis. 2009;15:613–4. DOIPubMedGoogle Scholar
- Roest HIJ, Ruuls RC, Tilburg JJHC, Nabuurs-Franssen MH, Klaassen CHW, Vellema P, Molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands. Emerg Infect Dis. 2011;17:668–75.PubMedGoogle Scholar
- Tilburg JJHC, Rossen JWA, van Hannen EJ, Melchers WJG, Hermans MHA, van de Bovenkamp J, Genotypic diversity of Coxiella burnetii in the 2007-2010 Q fever outbreak episodes in the Netherlands. J Clin Microbiol. 2012;50:1076–8. DOIPubMedGoogle Scholar
- van Belkum A. Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). FEMS Immunol Med Microbiol. 2007;49:22–7. DOIPubMedGoogle Scholar
- Glazunova O, Roux V, Freylikman O, Sekeyova Z, Fournous G, Tyczka J, Coxiella burnetii genotyping. Emerg Infect Dis. 2005;11:1211–7.PubMedGoogle Scholar
- Tilburg JJHC, Melchers WJG, Pettersson AM, Rossen JWA, Hermans MHA, van Hannen EJ, Interlaboratory evaluation of different extraction and real-time PCR methods for detection of Coxiella burnetii DNA in serum. J Clin Microbiol. 2010;48:3923–7. DOIPubMedGoogle Scholar
- Muskens J, van Engelen E, van Maanen C, Bartels C, Lam TJGM. Prevalence of Coxiella burnetii infection in Dutch dairy herds based on testing bulk tank milk and individual samples by PCR and ELISA. Vet Rec. 2011;168:79–82. DOIPubMedGoogle Scholar