Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 2—February 2014
Dispatch

Co-circulation of West Nile Virus Variants, Arizona, USA, 2010

Jessica A. Plante1, Kristen L. Burkhalter1, Brian R. Mann, Marvin S. Godsey, John-Paul Mutebi, and David W. C. BeasleyComments to Author 
Author affiliations: University of Texas Medical Branch, Galveston, Texas, USA (J.A. Plante, B.R. Mann, D.W.C. Beasley); Centers for Disease Control and Prevention, Fort Collins, Colorado, USA. (K.L. Burkhalter, M.S. Godsey, Jr., J.P. Mutebi)

Main Article

Figure 2

A) Bayesian phylogenetic tree of envelopes genes of all described Arizona, USA, 2010 isolates of West Nile virus (WNV) (n = 15). Isolates grouped in 3 distinct monophyletic clusters designated A (red), B (blue), and C (green). B) Bayesian phylogenetic tree of full-length encoded open reading frame for 3 Arizona, USA, 2010 isolates: AZ10.581 (red), AZ10.892 (green), AZ10.91 (blue), and 100 representative North American WNV isolates. All applied relaxed clock Bayesian methods used the generalized

Figure 2. . A) Bayesian phylogenetic tree of envelopes genes of all described Arizona, USA, 2010 isolates of West Nile virus (WNV) (n = 15). Isolates grouped in 3 distinct monophyletic clusters designated A (red), B (blue), and C (green). B) Bayesian phylogenetic tree of full-length encoded open reading frame for 3 Arizona, USA, 2010 isolates: AZ10.581 (red), AZ10.892 (green), AZ10.91 (blue), and 100 representative North American WNV isolates. All applied relaxed clock Bayesian methods used the generalized time reversible + invariant sites + Γ4 substitution model with a lognormal molecular clock and triplicate 50 million state runs produced in BEAST v1.6.2 (3). Inferred phylogenetic trees were edited in FigTree v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). Consistent phylogenetic topologies with additional neighbor-joining and maximum-likelihood methods further validated these inferred relationships. Posterior probabilities ≥0.90 are indicated for highlighted nodes. Scale bars indicate divergence time in years.

Main Article

References
  1. Gibney  KB, Colborn  J, Baty  S, Bunko Patterson  AM, Sylvester  T, Briggs  G, Modifiable risk factors for West Nile virus infection during an outbreak, Arizona, 2010. Am J Trop Med Hyg. 2012;86:895901. DOIPubMedGoogle Scholar
  2. Godsey  MS Jr, Burkhalter  K, Young  G, Delorey  M, Smith  K, Townsend  J, Entomologic investigations during an outbreak of West Nile virus disease in Maricopa County, Arizona, 2010. Am J Trop Med Hyg. 2012;87:112531. DOIPubMedGoogle Scholar
  3. Drummond  AJ, Rambaut  A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. DOIPubMedGoogle Scholar
  4. Añez  G, Grinev  A, Chancey  C, Ball  C, Akolkar  N, Land  KJ, Evolutionary dynamics of West Nile virus in the United States, 1999–2011: phylogeny, selection pressure and evolutionary time-scale analysis. PLoS Negl Trop Dis. 2013;7:e2245. DOIPubMedGoogle Scholar
  5. Bakonyi  T, Hubalek  Z, Rudolf  I, Nowotny  N. Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg Infect Dis. 2005;11:22531. DOIPubMedGoogle Scholar
  6. Li  L, Barrett  AD, Beasley  DW. Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains. Virology. 2005;335:99105. DOIPubMedGoogle Scholar
  7. McMullen  AR, Albayrak  H, May  FJ, Davis  CT, Beasley  DW, Barrett  AD. Molecular evolution of lineage 2 West Nile virus. J Gen Virol. 2013;94:31825. DOIPubMedGoogle Scholar
  8. Papa  A, Bakonyi  T, Xanthopoulou  K, Vazquez  A, Tenorio  A, Nowotny  N. Genetic characterization of West Nile virus lineage 2, Greece, 2010. Emerg Infect Dis. 2011;17:9202. DOIPubMedGoogle Scholar
  9. Bakonyi  T, Ivanics  E, Erdelyi  K, Ursu  K, Ferenczi  E, Weissenbock  H, Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg Infect Dis. 2006;12:61823. DOIPubMedGoogle Scholar
  10. McMullen  AR, May  FJ, Li  L, Guzman  H, Bueno  R Jr, Dennett  JA, Evolution of new genotype of West Nile virus in North America. Emerg Infect Dis. 2011;17:78593. DOIPubMedGoogle Scholar
  11. Zhang  S, Bovshik  EI, Maillard  R, Gromowski  GD, Volk  DE, Schein  CH, Role of BC loop residues in structure, function and antigenicity of the West Nile virus envelope protein receptor-binding domain III. Virology. 2010;403:8591. DOIPubMedGoogle Scholar
  12. Brault  AC. Changing patterns of West Nile virus transmission: altered vector competence and host susceptibility. Vet Res. 2009;40:43. DOIPubMedGoogle Scholar
  13. Beasley  DW, Davis  CT, Guzman  H, Vanlandingham  DL, Travassos da Rosa  AP, Parsons  RE, Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States. Virology. 2003;309:1905. DOIPubMedGoogle Scholar
  14. Mann  BR, McMullen  AR, Guzman  H, Tesh  RB, Barrett  AD. Dynamic transmission of West Nile virus across the United States–Mexican border. Virology. 2013;436:7580. DOIPubMedGoogle Scholar
  15. Duggal  NK, D’Anton  M, Xiang  J, Seiferth  R, Day  J, Nasci  R, Sequence analyses of 2012 west nile virus isolates from Texas fail to associate viral genetic factors with outbreak magnitude. Am J Trop Med Hyg. 2013;89:20510 . DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: January 17, 2014
Page updated: January 17, 2014
Page reviewed: January 17, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external