Volume 22, Number 4—April 2016
Research
Microevolution of Monophasic Salmonella Typhimurium during Epidemic, United Kingdom, 2005–2010
Figure 1
References
- Herikstad H, Motarjemi Y, Tauxe RV. Salmonella surveillance: a global survey of public health serotyping.. Epidemiol Infect. 2002;129:1–8.
- Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50:882–9. DOIPubMedGoogle Scholar
- Wales A, Davies RH. Environmental aspects of Salmonella. In: Barrow PA, Methner U, editors. Salmonella in domestic animals. 2nd ed. Wallingford (UK): CAB International; 2013. p. 399–425.
- Rabsch W, Truepschuch S, Windhorst D, Gerlach RG. Typing phages and prophages of Salmonella. In: Porwollik S, editor. Salmonella, from genome to function. Norfolk (UK): Caister Academic Press; 2011. p. 25–48.
- Rabsch W, Tschape H, Baumler AJ. Non-typhoidal salmonellosis: emerging problems. Microbes Infect. 2001;3:237–47. DOIPubMedGoogle Scholar
- Threlfall EJ. Epidemic Salmonella typhimurium DT 104—a truly international multiresistant clone. J Antimicrob Chemother. 2000;46:7–10. DOIPubMedGoogle Scholar
- Threlfall EJ, Frost JA, Ward LR, Rowe B. Epidemic in cattle and humans of Salmonella typhimurium DT104 with chromosomally integrated multiple drug resistance. Vet Rec. 1994;134:577. DOIPubMedGoogle Scholar
- UK Government. Salmonella in livestock production in GB—2014 [cited 2015 Jan 15]. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/468403/pub-salm14-intro.pdf
- Soyer Y, Switt AM, Davis MA, Maurer J, McDonough PL, Schoonmaker-Bopp DJ, et al. Salmonella enterica serotype 4,5,12:i:-, an emerging Salmonella serotype that represents multiple distinct clones. J Clin Microbiol. 2009;47:3546–56. DOIPubMedGoogle Scholar
- Laorden L, Herrera-Leon S, Martinez I, Sanchez A, Kromidas L, Bikandi J, et al. Genetic evolution of the Spanish multidrug-resistant Salmonella enterica 4,5,12:i:- monophasic variant. J Clin Microbiol. 2010;48:4563–6. DOIPubMedGoogle Scholar
- Trüpschuch S, Laverde Gomez JA, Ediberidze I, Flieger A, Rabsch W. Characterisation of multidrug-resistant Salmonella Typhimurium 4,[5],12:i:- DT193 strains carrying a novel genomic island adjacent to the thrW tRNA locus. Int J Med Microbiol. 2010;300:279–88. DOIPubMedGoogle Scholar
- de la Torre E, Zapata D, Tello M, Mejia W, Frias N, Garcia Pena FJ, et al. Several Salmonella enterica subsp. enterica serotype 4,5,12:i:- phage types isolated from swine samples originate from serotype Typhimurium DT U302. J Clin Microbiol. 2003;41:2395–400. DOIPubMedGoogle Scholar
- Mossong J, Marques P, Ragimbeau C, Huberty-Krau P, Losch S, Meyer G, et al. Outbreaks of monophasic Salmonella enterica serovar 4,[5],12:i:- in Luxembourg, 2006. Euro Surveill. 2007;12:719.PubMedGoogle Scholar
- Hauser E, Tietze E, Helmuth R, Junker E, Blank K, Prager R, et al. Pork contaminated with Salmonella enterica serovar 4,[5],12:i:-, an emerging health risk for humans. Appl Environ Microbiol. 2010;76:4601–10. DOIPubMedGoogle Scholar
- Barone L, Dal VA, Pellissier N, Vigano A, Romani C, Pontello M. Emergence of Salmonella Typhimurium monophasic serovar: determinants of antimicrobial resistance in porcine and human strains [in Italian]. Ann Ig. 2008;20:199–209 .PubMedGoogle Scholar
- Department for Environment. Food & Rural Affairs. Salmonella in livestock production in Great Britain. London: The Department; 2013.
- Switt AIM, Soyer Y, Warnick LD, Wiedmann M. Emergence, distribution, and molecular and phenotypic characteristics of Salmonella enterica serotype 4,5,12:i:-. Foodborne Pathog Dis. 2009;6:407–15. DOIPubMedGoogle Scholar
- Anderson ES, Ward LR, Saxe MJ, de Sa JD. Bacteriophage-typing designations of Salmonella typhimurium. J Hyg (Lond). 1977;78:297–300. DOIPubMedGoogle Scholar
- British Society of Antimicrobial Chemotherapy. EUCAST disk diffusion method. 2010 [cited 2015 Jan 15]. http://bsac.org.uk/eucastbsac-disc-diffusion-method/
- European Food Safety Authority. Scientific opinion on monitoring and assessment of the public health risk of “Salmonella Typhimurium-like” strains. EFSA Journal. 2010;8:1826.
- Swofford DL, Maddison WP. Parsimony, character-state reconstructions, and evolutionary inferences. In: Mayden RL, editor. Systematics, historical ecology, and North American freshwater fishes. Stanford (CA): Stanford University Press; 1992. p. 187–223.
- Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3. DOIPubMedGoogle Scholar
- Wood MW, Rosqvist R, Mullan PB, Edwards MH, Galyov EE. SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol Microbiol. 1996;22:327–38. DOIPubMedGoogle Scholar
- Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998;93:815–26. DOIPubMedGoogle Scholar
- Allison GE, Angeles D, Tran-Dinh N, Verma NK. Complete genomic sequence of SfV, a serotype-converting temperate bacteriophage of Shigella flexneri. J Bacteriol. 2002;184:1974–87. DOIPubMedGoogle Scholar
- Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, et al. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet. 2012;44:1215–21. DOIPubMedGoogle Scholar
- Mather AE, Reid SW, Maskell DJ, Parkhill J, Fookes MC, Harris SR, et al. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science. 2013;341:1514–7. DOIPubMedGoogle Scholar
- Nicholson FA, Chambers BJ, Williams JR, Unwin RJ. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Technol. 1999;70:23–31. DOIGoogle Scholar
- Slade RD, Kyriazakis I, Carroll SM, Reynolds FH, Wellock IJ, Broom LJ, et al. Effect of rearing environment and dietary zinc oxide on the response of group-housed weaned pigs to enterotoxigenic Escherichia coli O149 challenge. Animal. 2011;5:1170–8 http://dx.doi:10.1017/S1751731111000188. DOIPubMedGoogle Scholar
- Medardus JJ, Molla BZ, Nicol M, Morrow WM, Rajala-Schultz PJ, Kazwala R, et al. In-feed use of heavy metal micronutrients in U.S. swine production systems and its role in persistence of multidrug-resistant salmonellae. Appl Environ Microbiol. 2014;80:2317–25. DOIPubMedGoogle Scholar
- Hughes KT, Roth JR. Directed formation of deletions and duplications using Mud(Ap, lac). Genetics. 1985;109:263–82 .PubMedGoogle Scholar
- Hopkins KL, Threlfall EJ. Frequency and polymorphism of sopE in isolates of Salmonella enterica belonging to the ten most prevalent serotypes in England and Wales. J Med Microbiol. 2004;53:539–43. DOIPubMedGoogle Scholar
- Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W, Hardt WD. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem. 2001;276:34035–40. DOIPubMedGoogle Scholar
- Lopez CA, Winter SE, Rivera-Chavez F, Xavier MN, Poon V, Nuccio SP, et al. Phage-mediated acquisition of a type III secreted effector protein boosts growth of Salmonella by nitrate respiration. MBio. 2012;3:pii:e00143-12. DOIGoogle Scholar
1Current affiliation: University of Cambridge, Cambridge, UK.
Page created: December 01, 2016
Page updated: December 01, 2016
Page reviewed: December 01, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.