Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 8—August 2016

Borrelia miyamotoi Infection in Patients from Upper Midwestern United States, 2014–2015

Dean A. Jobe, Steven D. Lovrich, Darby G. Oldenburg, Todd J. Kowalski, and Steven M. CallisterComments to Author 
Author affiliations: Gundersen Health System, La Crosse, Wisconsin, USA

Cite This Article


We confirmed Borrelia miyamotoi infection in 7 patients who had contracted an illness while near La Crosse, Wisconsin, USA, an area where Ixodes scapularis ticks are endemic. B. miyamatoi infection should now be considered among differential diagnoses for patients from the midwestern United States who have signs and symptoms suggestive of tickborne illness.

The upper midwestern United States, which includes the region surrounding La Crosse, Wisconsin, is a well-described focus of Ixodes scapularis ticks. As a result, annual incidence of Lyme disease has been high (1) and prevalence of human granulocytic anaplasmosis (2) and babesiosis has been increasing (3). At the Gundersen Health System in La Crosse, we therefore use multiple laboratory procedures to screen patients with suspected I. scapularis tick–associated illness; the procedures include a whole-cell Borrelia burgdorferi ELISA and Western blot for confirming Lyme disease and PCRs for detecting infection with Anaplasma phagocytophilum or Babesia microti. However, other human illnesses caused by pathogenic microorganisms transmitted from I. scapularis ticks continue to emerge. Primary among them is Borrelia miyamotoi (4), a spirochete bacterium that colonizes blood and typically causes relapsing fevers accompanied by chills, headache, fatigue, myalgia, arthralgia (58), and (rarely) meningoencephalitis (9).

The first case of human infection with B. miyamotoi was documented in 2011 in a patient from Russia (5); additional cases have since been detected in Russia, Europe, Asia, and the United States (711). Although cases seem to have occurred only in patients who contracted the organism from infected I. scapularis ticks in the northeastern United States (8,10,11), persons in the upper midwestern United States (upper Midwest) are also commonly bitten by these ticks. In addition, Hamer et al. (12) detected B. miyamotoi DNA in I. scapularis ticks that had been captured from several sites in the upper Midwest during the 2006 and 2007 tick-questing seasons. We therefore conducted a retrospective investigation to determine whether patients at our healthcare facility with clinically suspected illness caused by tick bite could be infected with B. miyamotoi. To do so we also conducted B. miyamotoi DNA testing on blood samples submitted for A. phagocytophilum or B. microti DNA testing.

The Study

A total of 2,150 DNA samples were obtained from blood of patients evaluated during 2014–2015 for illness and tested for either A. phagocytophilum or B. microti because of clinical complaints or abnormalities suggestive of tickborne illness. Because our current laboratory procedures for confirming either infection require extraction of DNA from a blood sample before PCR testing, we also evaluated the extracted DNA for B. miyamotoi. Ethics approval for detecting and sequencing unique bacterial DNA from routine clinical samples and linkage to patient data without individual informed consent was obtained from the Gundersen Institutional Review Board with the stipulation that patient identifiers be appropriately redacted and information be used only as surveillance data for public health purposes.

We initially screened the DNA samples with a modification of a previously described B. miyamatoi screening PCR (13), which amplified a 70-bp DNA fragment of the 16S ribosomal RNA gene specific for B. miyamatoi. In brief, we combined 5 μL of extracted DNA with 20 μL of a master mix that contained 12.5 μL of buffer (AmpliTaq Gold DNA Polymerase with GeneAmp 10X PCR Gold Buffer; Life Technologies, Austin, TX, USA); 2.5 mmol/L magnesium chloride, deoxynucleoside triphosphates; 7 μL of a primer/probe mix comprising forward primer 5′-GCTGTAAACGATGCACACTTGGT-3′, reverse primer 5′-GGCGGCACACTTAACACGTTAG-3′, and probe 5′-HEX-CGGTACTAACCTTTCGATTA-3′; and 0.5 μL (1.5 U) AmpliTaq Gold DNA Polymerase under the following conditions: 1 cycle at 95°C for 10 min, 45 cycles at 95°C for 15 s, 63°C for 1 min, and a final cycle at 25°C for 5 s. For a positive control, we used strain HS1 (ATCC 35209) of Borrelia hermsii because B. miyamotoi DNA or viable spirochetes are not easily obtained.

We amplified B. miyamotoi DNA from 7 patients (1 male, 6 female) whose previous anaplasmosis and babesiosis test results were negative. Mean patient age was 51 years (range 3–70 years), and 3 patients confirmed that they had been bitten by a tick suspected to be I. scapularis within the 10 days before becoming ill. The patients also resided in or near La Crosse; although none reported recent travel outside the region, we cannot rule out the possibility that the infections were acquired elsewhere. Further supporting local acquisition, however, we also recently detected B. miyamotoi DNA by the PCR used in this study in a small number (≈2%) of I. scapularis ticks collected locally (data not shown).

The clinical signs and symptoms strongly supported PCR positivity for B. miyamotoi (58). The most common clinical sign was fever; 1 patient reported additional episodes of fever during the 2 months before seeking treatment (Table). In addition, skin lesions were not detected, although 1 patient may have been co-infected with B. burgdorferi; an IgM Western blot test performed in the clinical laboratory also yielded reactivity sufficient to provide serodiagnostic confirmation of early Lyme disease (14). Moreover, elevated levels of serum alanine aminotransferase (n = 2) or aspartate aminotransferase (n = 1) were detected in the only 2 patients for whom B. miyamotoi DNA was identified and who were tested for these liver enzyme abnormalities. In addition, the infected patients received doxycycline therapy for at least 7 days (mean 10 days; range 7–14 days), which uniformly resulted in complete resolution of clinical signs and symptoms.

For final confirmation of infection with B. miyamotoi, we then reamplified a 142-bp fragment (bp 636–777) of the glycerophosphodiester phosphodiesterase (glpQ) gene from the remaining DNA sample from each patient positive for B. miyamotoi by PCR. The glpQ gene was targeted because the GlpQ protein is absent in the Borrelia species that cause Lyme disease (15), which are detected relatively frequently in patients from the region (1). In brief, 5 μL of DNA was combined with 20 μL of a master mix that contained 12.5 μL of buffer, 0.5 μmol/L of forward (5′-GATAATATTCCTGTTATAATGC-3′) and reverse (5′-CACTGAGATTTAGTGATTTAAGTTC-3′) primers, and 0.5 μL (1.5 U) of AmpliTaq Gold DNA polymerase. The DNA was then amplified under the following conditions: 1 cycle at 95°C for 3 min followed by 50 cycles at 95°C for 45 s, 56°C for 30 s, and 72°C for 60 s, followed by a final extension at 72°C for 7 min. Amplified material was purified (QIAquick PCR Purification Kit; QIAGEN, Hilden, Germany) and forwarded to Laragen Inc. (Culver City, CA, USA) for sequencing. In each instance, the sequence of the amplified fragment was 100% homologous with that of B. miyamotoi LB-2001 (GenBank accession no. CP006647.2).


Researchers have documented human illness caused by B. miyamotoi transmitted from I. scapularis ticks (5,79,11), but infections in patients from the United States have to date been described only for residents of the northeastern part of the country (10). In this study, however, we confirmed characteristic illness caused by infection with B. miyamotoi in 7 patients who resided in the I. scapularis tick–endemic focus surrounding La Crosse, Wisconsin. Given these findings, clinicians in the upper Midwest must now also consider the possibility of B. miyamotoi infection in patients with suspected tickborne illness, especially because even more cases will probably be detected as appropriate methods, such B. miyamotoi-specific anti-GlpQ antibody testing (8,15) or B. miyamotoi DNA detection, become more widely available. Studies to provide additional insight into human infection with B. miyamotoi remain necessary because the prevalence of the illness will probably increase even more as I. scapularis ticks continue to disperse.

Mr. Jobe is the supervisor of the Gundersen Health System Molecular Diagnostics Testing Laboratory. His research interests focus primarily on the pathogenesis of tickborne illnesses.



This study was supported by funding from the Gundersen Medical Foundation.



  1. Kowalski  TJ, Tata  S, Berth  W, Mathiason  MA, Agger  WA. Antibiotic treatment duration and long-term outcomes of patients with early Lyme disease from a Lyme disease–hyperendemic area. Clin Infect Dis. 2010;50:51220. DOIPubMedGoogle Scholar
  2. Lovrich  SD, Jobe  DA, Kowalski  TJ, Policepatil  SM, Callister  SM. Expansion of the midwestern focus for human granulocytic anaplasmosis into the region surrounding La Crosse, Wisconsin. J Clin Microbiol. 2011;49:38559. DOIPubMedGoogle Scholar
  3. Kowalski  TJ, Jobe  DA, Dolan  EC, Kessler  A, Lovrich  SD, Callister  SM. The emergence of clinically relevant babesiosis in southwestern Wisconsin. WMJ. 2015;114:1527.PubMedGoogle Scholar
  4. Fukunaga  M, Takahashi  Y, Tsuruta  Y, Matsushita  O, Ralph  D, McClelland  M, Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov. isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int J Syst Bacteriol. 1995;45:80410. DOIPubMedGoogle Scholar
  5. Platonov  AE, Karan  LS, Kolyasnikova  NM, Makhneva  NA, Toporkova  MG, Maleev  VV, Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg Infect Dis. 2011;17:181623. DOIPubMedGoogle Scholar
  6. Krause  PJ, Fish  D, Narasimham  S, Barbour  AG. Borrelia miyamotoi infection in nature and humans. Clin Microbiol Infect. 2015;21:6319. DOIPubMedGoogle Scholar
  7. Sato  K, Takano  A, Konnai  S, Nakao  M, Ito  T, Koyama  K, Human infections with Borrelia miyamotoi, Japan. Emerg Infect Dis. 2014;20:13913. DOIPubMedGoogle Scholar
  8. Molloy  PJ, Telford  III Sr, Howdri  HR, Lepore  TJ, Gugliotta  JL, Weeks  KE, Borrelia miyamotoi disease in the northeastern United States. Ann Intern Med. 2015;163:918. DOIPubMedGoogle Scholar
  9. Gugliotta  JL, Goethert  HK, Berardi  VP, Telford  III Sr. Meningoencephalitis from Borrelia miyamotoi in an immunocompromised patient. N Engl J Med. 2013;368:2405. DOIPubMedGoogle Scholar
  10. Krause  PJ. Narasimhan  S, Wormser  GP, Rollend  L, Fikrig  E, Lepore  T, Human Borrelia miyamotoi infection in the United States. N Engl J Med. 2013;368:2913. DOIPubMedGoogle Scholar
  11. Chowdri  HR, Gugliotta  JL, Berardi  VP, Goethert  HK, Molloy  PJ, Sterling  SL, Borrelia miyamotoi infection presenting as human granulocytic anaplasmosis: a case report. Ann Intern Med. 2013;159:217. DOIPubMedGoogle Scholar
  12. Hamer  SA, Hickling  GJ, Walker  ED, Tsao  JI. Increased diversity of zoonotic pathogens and Borrelia burgdorferi strains in established versus incipient Ixodes scapularis populations across the midwestern United States. Infect Genet Evol. 2014;27:53142. DOIPubMedGoogle Scholar
  13. Barbour  AG, Bunikis  J, Travinsky  B, Hoen  AG, Duik-Wasser  MA, Fish  D, Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same vector and mammalian reservoir species. Am J Trop Med Hyg. 2009;81:112031. DOIPubMedGoogle Scholar
  14. Centers for Disease Control and Prevention. Recommendations for test performance and interpretation from the Second National Conference on Serologic Diagnosis of Lyme Disease. MMWR Morb Mortal Wkly Rep. 1995;44:5901.PubMedGoogle Scholar
  15. Schwan  TG, Schrumpf  ME, Hinnebusch  BJ, Anderson  DE, Konkel  ME. GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol. 1996;34:248392.PubMedGoogle Scholar




Cite This Article

DOI: 10.3201/eid2208.151878

Table of Contents – Volume 22, Number 8—August 2016

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Steven M. Callister, Microbiology Research and Molecular Diagnostics Laboratories, Health Science Center, Rm 5032, 1300 Badger St, La Crosse, WI 54601, USA

Send To

10000 character(s) remaining.


Page created: July 15, 2016
Page updated: July 15, 2016
Page reviewed: July 15, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.