Volume 22, Number 8—August 2016
Letter
Artemisinin-Resistant Plasmodium falciparum K13 Mutant Alleles, Thailand–Myanmar Border
Figure

Figure. Distribution of parasite clearance half-lives (n = 33, squares) and Ring-stage survival assay survival rates (n = 25, circles) of Plasmodium falciparum isolates from patients on the Thailand–Myanmar border, determined on the basis of each K13 genotype. Mean survival rate of duplicate measures are showed for each isolate. Dashed line represents the cutoff value for parasite clearance half-life (artemisinin resistance >5 h) and RSA survival (artemisinin resistance >1%). K13 alleles N458Y and C580Y were consistently associated with parasite clearance half-life and survival rates above threshold. Bold text indicates K13 alleles with variable parasite clearance half-life and RSA associations. Horizontal bars represent median values for each K13 genotype. Survival rate for laboratory reference 3D7 strain was 0.2%.
References
- Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211:670–9. DOIPubMedGoogle Scholar
- Fairhurst RM. Understanding artemisinin-resistant malaria: what a difference a year makes. Curr Opin Infect Dis. 2015;28:417–25. DOIPubMedGoogle Scholar
- World Health Organization. Status report on artemisinin and ACT resistance—September 2015 [cited 2015 Dec 12]. http://www.who.int/malaria/publications/atoz/status-rep-artemisinin-resistance-sept2015.pdf
- Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6. DOIPubMedGoogle Scholar
- Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23. DOIPubMedGoogle Scholar
- White LJ, Flegg JA, Phyo AP, Wiladpai-ngern JH, Bethell D, Plowe C, Defining the in vivo phenotype of artemisinin-resistant falciparum malaria: a modelling approach. PLoS Med. 2015;12:••• . DOIPubMedGoogle Scholar
- Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–9. DOIPubMedGoogle Scholar
- Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2013;505:50–5. DOIPubMedGoogle Scholar
- Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31. DOIPubMedGoogle Scholar
- Wang Z, Wang Y, Cabrera M, Zhang Y, Gupta B, Wu Y, Artemisinin resistance at the China-Myanmar border and association with mutations in the K13 propeller gene. Antimicrob Agents Chemother. 2015;•••:6952–9. DOIPubMedGoogle Scholar
1These authors contributed equally to this article.