Volume 24, Number 6—June 2018
Research Letter
Zooanthroponotic Transmission of Drug-Resistant Pseudomonas aeruginosa, Brazil
Table
Characteristic | Isolate† |
||
---|---|---|---|
ICBDVIM-2 | ICBHVIM-2 | ICBSVIM-2 | |
Host/environment |
Dog |
Human |
Household environment |
Sample |
Ear secretion, rectal swab, oral swab |
Feces |
Sofa swab |
Isolation date |
2016 Dec 15; 2017 Mar 6 |
2017 Mar 6 |
2017 Mar 6 |
Resistance profile |
AMK, AMC, CAZ, CFO, CIP, CL, CPM, CRO, CTX, GEN, IMP, MER, NAL, PPT, STX, TET, TIC |
AMK, AMC, CAZ, CFO, CIP, CL, CPM, CRO, CTX, GEN, IMP, MER, NAL, PPT, STX, TET, TIC |
AMK, AMC, CAZ, CFO, CIP, CL, CPM, CRO, CTX, GEN, IMP, MER, NAL, PPT, STX, TET, TIC |
Carbapenem MIC, μg/mL‡ |
>32 |
>32 |
>32 |
Resistance genes to: | |||
β-Lactams | blaVIM-2, blaPAO, blaOXA-4, blaOXA-50 | blaVIM-2, blaPAO, blaOXA-4, blaOXA-50 | blaVIM-2, blaPAO, blaOXA-4, blaOXA-50 |
Aminoglycosides | aadA2, aac(3)-Id, aph(3)-IIb | aadA2, aac(3)-Id, aph(3)-IIb | aadA2, aac(3)-Id, aph(3)-IIb |
Chloramphenicol | catB7, cmlA1 | catB7, cmlA1 | catB7, cmlA1 |
Sulfonamides | sul1 | sul1 | sul1 |
Trimethoprim | dfrB5 | dfrB5 | dfrB5 |
Tetracyclines | tetG | tetG | tetG |
Fosfomycin |
fosA |
fosA |
fosA |
Location of blaVIM-2 |
Chromosome |
Chromosome |
Chromosome |
MLST,(ST/CC | 233/233 | 233/233 | 233/233 |
*AMK, amikacin; AMC, amoxicillin/clavulanic acid; CAZ, ceftazidime; CC, clonal complex; CFO, cefoxitin; CIP, ciprofloxacin; CL, chloramphenicol; CPM, cefepime; CRO, ceftriaxone; CTX, cefotaxime; GEN, gentamicin; IMP, imipenem; MER, meropenem; MLST, multilocus sequence typing; NAL, nalidixic acid; PPT, piperacillin/tazobactam; ST, sequence type; SXT, trimethoprim/sulfamethoxazole; TET, tetracycline, TIC, ticarcillin.
†Clonally related P. aeruginosa strains ICBDVIM-2 (ear secretion), ICBRVIM-2 (rectal swab), and ICBBVIM-2 (oral swab) were isolated from samples collected in the infected dog. ICBDVIM-2 was isolated on December 15, 2016. ICBRVIM-2 and ICBBVIM-2 were isolated on March 6, 2017. All P. aeruginosa strains from the infected dog displayed identical resistance profiles and genetic backgrounds.
‡Imipenem and meropenem.
References
- Ewers C, Klotz P, Leidner U, Stamm I, Prenger-Berninghoff E, Göttig S, et al. OXA-23 and ISAba1-OXA-66 class D β-lactamases in Acinetobacter baumannii isolates from companion animals. Int J Antimicrob Agents. 2017;49:37–44. DOIPubMedGoogle Scholar
- Messenger AM, Barnes AN, Gray GC. Reverse zoonotic disease transmission (zooanthroponosis): a systematic review of seldom-documented human biological threats to animals. PLoS One. 2014;9:e89055. DOIPubMedGoogle Scholar
- Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, El Din Ashour S. Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt. BMC Infect Dis. 2015;15:122. DOIPubMedGoogle Scholar
- Perez F, Hujer AM, Marshall SH, Ray AJ, Rather PN, Suwantarat N, et al. Extensively drug-resistant pseudomonas aeruginosa isolates containing blaVIM-2 and elements of Salmonella genomic island 2: a new genetic resistance determinant in Northeast Ohio. Antimicrob Agents Chemother. 2014;58:5929–35. DOIPubMedGoogle Scholar
- Wright LL, Turton JF, Livermore DM, Hopkins KL, Woodford N. Dominance of international ‘high-risk clones’ among metallo-β-lactamase-producing Pseudomonas aeruginosa in the UK. J Antimicrob Chemother. 2015;70:103–10. DOIPubMedGoogle Scholar
- Sader HS, Reis AO, Silbert S, Gales AC. IMPs, VIMs and SPMs: the diversity of metallo-β-lactamases produced by carbapenem-resistant Pseudomonas aeruginosa in a Brazilian hospital. Clin Microbiol Infect. 2005;11:73–6. DOIPubMedGoogle Scholar
- Lübbert C, Lippmann N, Busch T, Kaisers UX, Ducomble T, Eckmanns T, et al. Long-term carriage of Klebsiella pneumoniae carbapenemase-2-producing K pneumoniae after a large single-center outbreak in Germany. Am J Infect Control. 2014;42:376–80. DOIPubMedGoogle Scholar
- Gottesman T, Agmon O, Shwartz O, Dan M. Household transmission of carbapenemase-producing Klebsiella pneumoniae. Emerg Infect Dis. 2008;14:859–60. DOIPubMedGoogle Scholar
- Al Bayssari C, Dabboussi F, Hamze M, Rolain JM. Emergence of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii in livestock animals in Lebanon. J Antimicrob Chemother. 2015;70:950–1. DOIPubMedGoogle Scholar
- Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39. DOIPubMedGoogle Scholar
1These authors contributed equally to this article.