Volume 25, Number 1—January 2019
Research
Multiple Introductions of Domestic Cat Feline Leukemia Virus in Endangered Florida Panthers1
Table 2
Region | Sequence, 5′ → 3′ | Species | Cycling conditions or reference |
---|---|---|---|
Full genome (first half) | 95°C for 3 min; 30 cycles at 98°C for 20 s; 60°C for 15 s; 72°C for 2 min 40 s; 72°C for 2 min 40 s |
||
Forward | TGAAAGACCCCCTACCCCAAAATTTAGCC | Puma concolor coryi/Felis catus | |
Reverse |
GCGGGTCCATTATCTGAACCCAATACC |
P. concolor coryi/F. catus |
|
Full genome (second half) | |||
Forward | GAGTTCCTTGGAACTGCAGGTTACTGCC | P. concolor coryi/F. catus | |
Reverse | TGAAAGACCCCTGAACTAGGTCTTCCTCG | P. concolor coryi | |
Reverse 2 |
GCTGGCAGTGGCCTTGAAACTTCTG |
F. catus |
|
FeLV-B env | (28) | ||
Forward | CAGATCAGGAACCATTCCCAGG | P. concolor coryi | |
Reverse |
CCTCTAACTTCCTTGTATCTCATGG |
P. concolor coryi |
|
LTR-gag | |||
Forward | CGCAACCCTGGAAGACGTTCCA | P. concolor coryi/F. catus | 95°C for 3 min; 30 cycles at 98°C for 20 s; 60°C for 15 s; 72°C for 15 s; 72°C for 30 s |
Reverse | TCGTCTCCGATCAACACCCTGTATTCA | P. concolor coryi/F. catus | |
gag | |||
Forward | GGACCTTATGGACACCCCGACCAA | P. concolor coryi/F. catus | |
Reverse | GGAGGGGGTAGGAACGGACGAA | P. concolor coryi/F. catus | |
env | |||
Forward | CCTTTTACGTCTGCCCAGGGCAT | P. concolor coryi/F. catus | |
Reverse | TTCCACCAAGCTTCTCCTGTGGTCT | P. concolor coryi/F. catus |
*The first half-genome primer set for FeLV sequencing (F/5.2R) spanning 5′-LTR/3′-pol was the same for the FeLV-positive Florida panthers and domestic cats. Reverse half-genome primers were designed to avoid amplification of domestic cat enFeLV and therefore differed for Florida panthers and domestic cats. FeLV, feline leukemia virus.
References
- Willett BJ, Hosie MJ. Feline leukaemia virus: half a century since its discovery. Vet J. 2013;195:16–23. DOIPubMedGoogle Scholar
- Jarrett O, Russell PH. Differential growth and transmission in cats of feline leukaemia viruses of subgroups A and B. Int J Cancer. 1978;21:466–72. DOIPubMedGoogle Scholar
- Chiu ES, Hoover EA, VandeWoude S. A retrospective examination of feline leukemia subgroup characterization: viral interference assays to deep sequencing. Viruses. 2018;10:E29. DOIPubMedGoogle Scholar
- Mackey L, Jarrett W, Jarrett O, Laird H. Anemia associated with feline leukemia virus infection in cats. J Natl Cancer Inst. 1975;54:209–17. DOIPubMedGoogle Scholar
- Mullins JI, Hoover EA, Overbaugh J, Quackenbush SL, Donahue PR, Poss ML. FeLV-FAIDS-induced immunodeficiency syndrome in cats. Vet Immunol Immunopathol. 1989;21:25–37. DOIPubMedGoogle Scholar
- Hartmann K. Clinical aspects of feline retroviruses: a review. Viruses. 2012;4:2684–710. DOIPubMedGoogle Scholar
- Stewart MA, Warnock M, Wheeler A, Wilkie N, Mullins JI, Onions DE, et al. Nucleotide sequences of a feline leukemia virus subgroup A envelope gene and long terminal repeat and evidence for the recombinational origin of subgroup B viruses. J Virol. 1986;58:825–34.PubMedGoogle Scholar
- O’Hara B, Johann SV, Klinger HP, Blair DG, Rubinson H, Dunn KJ, et al. Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ. 1990;1:119–27.PubMedGoogle Scholar
- Takeuchi Y, Vile RG, Simpson G, O’Hara B, Collins MK, Weiss RA. Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus. J Virol. 1992;66:1219–22.PubMedGoogle Scholar
- Roy-Burman P. Endogenous env elements: partners in generation of pathogenic feline leukemia viruses. Virus Genes. 1995;11:147–61. DOIPubMedGoogle Scholar
- Hoover EA, Mullins JI. Feline leukemia virus infection and diseases. J Am Vet Med Assoc. 1991;199:1287–97.PubMedGoogle Scholar
- Stewart H, Jarrett O, Hosie MJ, Willett BJ. Complete genome sequences of two feline leukemia virus subgroup B isolates with novel recombination sites. Genome Announc. 2013;1:e00036–12. DOIPubMedGoogle Scholar
- Yilmaz H, Ilgaz A, Harbour DA. Prevalence of FIV and FeLV infections in cats in Istanbul. J Feline Med Surg. 2000;2:69–70. DOIPubMedGoogle Scholar
- Muirden A. Prevalence of feline leukaemia virus and antibodies to feline immunodeficiency virus and feline coronavirus in stray cats sent to an RSPCA hospital. Vet Rec. 2002;150:621–5. DOIPubMedGoogle Scholar
- Bandecchi P, Dell’Omodarme M, Magi M, Palamidessi A, Prati MC. Feline leukaemia virus (FeLV) and feline immunodeficiency virus infections in cats in the Pisa district of Tuscany, and attempts to control FeLV infection in a colony of domestic cats by vaccination. Vet Rec. 2006;158:555–7. DOIPubMedGoogle Scholar
- Gleich SE, Krieger S, Hartmann K. Prevalence of feline immunodeficiency virus and feline leukaemia virus among client-owned cats and risk factors for infection in Germany. J Feline Med Surg. 2009;11:985–92. DOIPubMedGoogle Scholar
- Sleeman JM, Keane JM, Johnson JS, Brown RJ, Woude SV. Feline leukemia virus in a captive bobcat. J Wildl Dis. 2001;37:194–200. DOIPubMedGoogle Scholar
- Luaces I, Doménech A, García-Montijano M, Collado VM, Sánchez C, Tejerizo JG, et al. Detection of Feline leukemia virus in the endangered Iberian lynx (Lynx pardinus). J Vet Diagn Invest. 2008;20:381–5. DOIPubMedGoogle Scholar
- Cunningham MW, Brown MA, Shindle DB, Terrell SP, Hayes KA, Ferree BC, et al. Epizootiology and management of feline leukemia virus in the Florida puma. J Wildl Dis. 2008;44:537–52. DOIPubMedGoogle Scholar
- Filoni C, Catão-Dias JL, Cattori V, Willi B, Meli ML, Corrêa SH, et al. Surveillance using serological and molecular methods for the detection of infectious agents in captive Brazilian neotropic and exotic felids. J Vet Diagn Invest. 2012;24:166–73. DOIPubMedGoogle Scholar
- Silva CP, Onuma SS, de Aguiar DM, Dutra V, Nakazato L. Molecular detection of Feline Leukemia Virus in free-ranging jaguars (Panthera onca) in the Pantanal region of Mato Grosso, Brazil. Braz J Infect Dis. 2016;20:316–7. DOIPubMedGoogle Scholar
- Polani S, Roca AL, Rosensteel BB, Kolokotronis SO, Bar-Gal GK. Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage. Virology. 2010;405:397–407. DOIPubMedGoogle Scholar
- Meli ML, Cattori V, Martínez F, López G, Vargas A, Simón MA, et al. Feline leukemia virus and other pathogens as important threats to the survival of the critically endangered Iberian lynx (Lynx pardinus). PLoS One. 2009;4:e4744. DOIPubMedGoogle Scholar
- Brown MA, Cunningham MW, Roca AL, Troyer JL, Johnson WE, O’Brien SJ. Genetic characterization of feline leukemia virus from Florida panthers. Emerg Infect Dis. 2008;14:252–9. DOIPubMedGoogle Scholar
- Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17:857–72. DOIPubMedGoogle Scholar
- Fan H, Gulley ML. DNA extraction from fresh or frozen tissues. In: Killeen AA, editor. Molecular pathology protocols. Totowa (NJ): Humana Press Inc.; 2001. p. 5–10.
- Carver S, Bevins SN, Lappin MR, Boydston EE, Lyren LM, Alldredge M, et al. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States. Ecol Appl. 2016;26:367–81. DOIPubMedGoogle Scholar
- Powers JA, Chiu ES, Kraberger SJ, Roelke-Parker M, Lowery I, Erbeck K, et al. Feline leukemia virus disease outcomes in a domestic cat breeding colony: relationship to endogenous FeLV and other chronic viral infections. J Virol. 2018;92:e00649–18. DOIPubMedGoogle Scholar
- Chandhasin C, Coan PN, Pandrea I, Grant CK, Lobelle-Rich PA, Puetter A, et al. Unique long terminal repeat and surface glycoprotein gene sequences of feline leukemia virus as determinants of disease outcome. J Virol. 2005;79:5278–87. DOIPubMedGoogle Scholar
- Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41(D1):D36–42. DOIPubMedGoogle Scholar
- Muhire BM, Varsani A, Martin DP. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One. 2014;9:e108277. DOIPubMedGoogle Scholar
- Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. DOIPubMedGoogle Scholar
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9. DOIPubMedGoogle Scholar
- Posada D. Selection of models of DNA evolution with jModelTest. Totowa (NJ): Humana Press Inc; 2009.
- Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. DOIPubMedGoogle Scholar
- Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci. 1986;17:57–86.
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20. DOIPubMedGoogle Scholar
- Jukes TH, Cantor CR. Evolution of protein molecules. New York: Academic Press; 1969.
- Roelke ME, Forrester DJ, Jacobson ER, Kollias GV, Scott FW, Barr MC, et al. Seroprevalence of infectious disease agents in free-ranging Florida panthers (Felis concolor coryi). J Wildl Dis. 1993;29:36–49. DOIPubMedGoogle Scholar
- Lee IT, Levy JK, Gorman SP, Crawford PC, Slater MR. Prevalence of feline leukemia virus infection and serum antibodies against feline immunodeficiency virus in unowned free-roaming cats. J Am Vet Med Assoc. 2002;220:620–2. DOIPubMedGoogle Scholar
- Aguilar GD, Farnworth MJ. Distribution characteristics of unmanaged cat colonies over a 20 year period in Auckland, New Zealand. Appl Geogr. 2013;37:160–7. DOIGoogle Scholar
- Jarrett O, Hardy WD Jr, Golder MC, Hay D. The frequency of occurrence of feline leukaemia virus subgroups in cats. Int J Cancer. 1978;21:334–7. DOIPubMedGoogle Scholar
- Stewart H, Jarrett O, Hosie MJ, Willett BJ. Are endogenous feline leukemia viruses really endogenous? Vet Immunol Immunopathol. 2011;143:325–31. DOIPubMedGoogle Scholar
- Rojko JL, Olsen RG. The immunobiology of the feline leukemia virus. Vet Immunol Immunopathol. 1984;6:107–65. DOIPubMedGoogle Scholar
- Tzavaras T, Stewart M, McDougall A, Fulton R, Testa N, Onions DE, et al. Molecular cloning and characterization of a defective recombinant feline leukaemia virus associated with myeloid leukaemia. J Gen Virol. 1990;71:343–54. DOIPubMedGoogle Scholar
- Löber U, Hobbs M, Dayaram A, Tsangaras K, Jones K, Alquezar-Planas DE, et al. Degradation and remobilization of endogenous retroviruses by recombination during the earliest stages of a germ-line invasion. Proc Natl Acad Sci U S A. 2018;115:8609–14. DOIPubMedGoogle Scholar
- Ávila-Arcos MC, Ho SY, Ishida Y, Nikolaidis N, Tsangaras K, Hönig K, et al. One hundred twenty years of koala retrovirus evolution determined from museum skins. Mol Biol Evol. 2013;30:299–304. DOIPubMedGoogle Scholar
- Tarlinton R, Meers J, Hanger J, Young P. Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. J Gen Virol. 2005;86:783–7. DOIPubMedGoogle Scholar
- Moss WE, Alldredge MW, Logan KA, Pauli JN. Human expansion precipitates niche expansion for an opportunistic apex predator (Puma concolor). Sci Rep. 2016;6:39639. DOIPubMedGoogle Scholar
1Preliminary results from this study were presented at the Ecology and Evolution of Infectious Diseases Conference, June 24–27, 2017, Santa Barbara, California, USA.
Page created: December 18, 2018
Page updated: December 18, 2018
Page reviewed: December 18, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.