Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 7—July 2019
Synopsis

Bacillus cereus–Attributable Primary Cutaneous Anthrax-Like Infection in Newborn Infants, India

Lahari Saikia1Comments to Author , Navonil Gogoi, Partha Pratim Das, Arunjyoti Sarmah, Kumari Punam, Bipanchi Mahanta, Simi Bora, and Reeta Bora
Author affiliations: Assam Medical College & Hospital, Dibrugarh, India

Main Article

Figure 6

Phylogenetic network analysis using Splits Tree (21) identified 2 lineages among the whole population of 14 STs, Assam Medical College & Hospital, Dibrugarh, Assam, Northeast, India, 2018. ST, sequence type.

Figure 6. Phylogenetic network analysis using Splits Tree (21) identified 2 lineages among the whole population of 14 STs, Assam Medical College & Hospital, Dibrugarh, Assam, Northeast, India, 2018. ST, sequence type.

Main Article

References
  1. Mazas  M, López  M, Martínez  S, Bernardo  A, Martin  R. Heat resistance of Bacillus cereus spores: effects of milk constituents and stabilizing additives. J Food Prot. 1999;62:4103. DOIPubMedGoogle Scholar
  2. Hong  HA, Duc  H, Cutting  SM. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev. 2005;29:81335. DOIPubMedGoogle Scholar
  3. Miller  RA, Jian  J, Beno  SM, Wiedmann  M, Kovac  J. Intraclade variability in toxin production and cytotoxicity of Bacillus cereus group type strains and dairy-associated isolates. Appl Environ Microbiol. 2018;84:e0247917. DOIPubMedGoogle Scholar
  4. Darbar  A, Harris  IA, Gosbell  IB. Necrotizing infection due to Bacillus cereus mimicking gas gangrene following penetrating trauma. J Orthop Trauma. 2005;19:3535.PubMedGoogle Scholar
  5. Henrickson  KJ. A second species of Bacillus causing primary cutaneous disease. Int J Dermatol. 1990;29:1920. DOIPubMedGoogle Scholar
  6. Brett  MM, Hood  J, Brazier  JS, Duerden  BI, Hahné  SJM. Soft tissue infections caused by spore-forming bacteria in injecting drug users in the United Kingdom. Epidemiol Infect. 2005;133:57582. DOIPubMedGoogle Scholar
  7. Akesson  A, Hedström  SA, Ripa  T. Bacillus cereus: a significant pathogen in postoperative and post-traumatic wounds on orthopaedic wards. Scand J Infect Dis. 1991;23:717. DOIPubMedGoogle Scholar
  8. Hoffmaster  AR, Ravel  J, Rasko  DA, Chapman  GD, Chute  MD, Marston  CK, et al. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci U S A. 2004;101:844954. DOIPubMedGoogle Scholar
  9. Miller  JM, Hair  JG, Hebert  M, Hebert  L, Roberts  FJ Jr, Weyant  RS. Fulminating bacteremia and pneumonia due to Bacillus cereus. J Clin Microbiol. 1997;35:5047.PubMedGoogle Scholar
  10. Henrickson  KJ, Shenep  JL, Flynn  PM, Pui  CH. Primary cutaneous bacillus cereus infection in neutropenic children. Lancet. 1989;1:6013. DOIPubMedGoogle Scholar
  11. Gray  J, George  RH, Durbin  GM, Ewer  AK, Hocking  MD, Morgan  MEI. An outbreak of Bacillus cereus respiratory tract infections on a neonatal unit due to contaminated ventilator circuits. J Hosp Infect. 1999;41:1922. DOIPubMedGoogle Scholar
  12. Patrick  CC, Langston  C, Baker  CJ. Bacillus species infections in neonates. Rev Infect Dis. 1989;11:6125. DOIPubMedGoogle Scholar
  13. Sagripanti  JL, Bonifacino  A. Comparative sporicidal effects of liquid chemical agents. Appl Environ Microbiol. 1996;62:54551.PubMedGoogle Scholar
  14. Ehresmann  C, Stiegler  P, Fellner  P, Ebel  JP. The determination of the primary structure of the 16S ribosomal RNA of Escherichia coli. 2. Nucleotide sequences of products from partial enzymatic hydrolysis. Biochimie. 1972;54:90167. DOIPubMedGoogle Scholar
  15. Jolley  KA, Maiden  MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595. DOIPubMedGoogle Scholar
  16. Francisco  AP, Vaz  C, Monteiro  PT, Melo-Cristino  J, Ramirez  M, Carriço  JA. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics. 2012;13:87. DOIPubMedGoogle Scholar
  17. Stamatakis  A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:13123. DOIPubMedGoogle Scholar
  18. Martin  DP, Murrell  B, Golden  M, Khoosal  A, Muhire  B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:vev003. DOIPubMedGoogle Scholar
  19. Rozas  J, Sánchez-DelBarrio  JC, Messeguer  X, Rozas  R, Dna  SP. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19:24967. DOIPubMedGoogle Scholar
  20. Jolley  KA, Feil  EJ, Chan  MS, Maiden  MC. Sequence type analysis and recombinational tests (START). Bioinformatics. 2001;17:12301. DOIPubMedGoogle Scholar
  21. Huson  DH, Bryant  D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:25467. DOIPubMedGoogle Scholar
  22. Haubold  B, Hudson  RR. LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage Analysis. Bioinformatics. 2000;16:8478. DOIPubMedGoogle Scholar
  23. Hoffmaster  AR, Novak  RT, Marston  CK, Gee  JE, Helsel  L, Pruckler  JM, et al. Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC Microbiol. 2008;8:191. DOIPubMedGoogle Scholar
  24. Priest  FG, Barker  M, Baillie  LWJ, Holmes  EC, Maiden  MCJ. Population structure and evolution of the Bacillus cereus group. J Bacteriol. 2004;186:795970. DOIPubMedGoogle Scholar
  25. Barker  M, Thakker  B, Priest  FG. Multilocus sequence typing reveals that Bacillus cereus strains isolated from clinical infections have distinct phylogenetic origins. FEMS Microbiol Lett. 2005;245:17984. DOIPubMedGoogle Scholar
  26. Hill  KK, Ticknor  LO, Okinaka  RT, Asay  M, Blair  H, Bliss  KA, et al. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol. 2004;70:106880. DOIPubMedGoogle Scholar
  27. Helgason  E, Okstad  OA, Caugant  DA, Johansen  HA, Fouet  A, Mock  M, et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol. 2000;66:262730. DOIPubMedGoogle Scholar
  28. Cardazzo  B, Negrisolo  E, Carraro  L, Alberghini  L, Patarnello  T, Giaccone  V. Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl Environ Microbiol. 2008;74:85060. DOIPubMedGoogle Scholar
  29. Moravek  M, Dietrich  R, Buerk  C, Broussolle  V, Guinebretière  MH, Granum  PE, et al. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol Lett. 2006;257:2938. DOIPubMedGoogle Scholar
  30. Doll  VM, Ehling-Schulz  M, Vogelmann  R. Concerted action of sphingomyelinase and non-hemolytic enterotoxin in pathogenic Bacillus cereus. PLoS One. 2013;8:e61404. DOIPubMedGoogle Scholar
  31. Kolesnick  RN, Goñi  FM, Alonso  A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol. 2000;184:285300. DOIPubMedGoogle Scholar
  32. Haug  TM, Sand  SL, Sand  O, Phung  D, Granum  PE, Hardy  SP. Formation of very large conductance channels by Bacillus cereus Nhe in Vero and GH(4) cells identifies NheA + B as the inherent pore-forming structure. J Membr Biol. 2010;237:111. DOIPubMedGoogle Scholar
  33. Tran  S-L, Guillemet  E, Gohar  M, Lereclus  D, Ramarao  N. CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J Bacteriol. 2010;192:263842. DOIPubMedGoogle Scholar
  34. Beecher  DJ, Macmillan  JD. Characterization of the components of hemolysin BL from Bacillus cereus. Infect Immun. 1991;59:177884.PubMedGoogle Scholar
  35. Ehling-Schulz  M, Guinebretiere  MH, Monthán  A, Berge  O, Fricker  M, Svensson  B. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol Lett. 2006;260:23240. DOIPubMedGoogle Scholar
  36. Ehling-Schulz  M, Svensson  B, Guinebretiere  MH, Lindbäck  T, Andersson  M, Schulz  A, et al. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology. 2005;151:18397. DOIPubMedGoogle Scholar
  37. Kmiha  S, Aouadhi  C, Klibi  A, Jouini  A, Béjaoui  A, Mejri  S, et al. Seasonal and regional occurrence of heat-resistant spore-forming bacteria in the course of ultra-high temperature milk production in Tunisia. J Dairy Sci. 2017;100:60909. DOIPubMedGoogle Scholar
  38. Cheng  VCC, Chen  JHK, Leung  SSM, So  SYC, Wong  S-C, Wong  SCY, et al. Seasonal outbreak of Bacillus bacteremia associated with contaminated linen in Hong Kong. Clin Infect Dis. 2017;64(suppl_2):S91–7.
  39. Bottone  EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev. 2010;23:38298. DOIPubMedGoogle Scholar
  40. Gröschel  D, Burgress  MA, Bodey  GP Sr. Gas gangrene-like infection with Bacillus cereus in a lymphoma patient. Cancer. 1976;37:98891. DOIPubMedGoogle Scholar
  41. Saz  AK. An introspective view of penicillinase. J Cell Physiol. 1970;76:397403. DOIPubMedGoogle Scholar

Main Article

1Current affiliation: Gauhati Medical College & Hospital, Guwahati, India.

Page created: June 17, 2019
Page updated: June 17, 2019
Page reviewed: June 17, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external