Volume 25, Number 7—July 2019
Research
High-Complexity Plasmodium falciparum Infections, North Central Nigeria, 2015–2018
Table 1
PCR description | Primer name or type: sequence, 5′→3′ | Size, bp | Reference |
---|---|---|---|
Nest-1 |
rPLU1: TCAAAGATTAAGCCATGCAAGTGA | 620 |
(27) |
rPLU5: CCTGTTGTTGCCTTAAACTCC |
|||
Nest-2, genus-specific PCR |
rPLU3: TTTTTATAAGGATAACTACGGAAAAGCTGT | 240 |
(27) |
rPLU4: TACCCGTCATAGCCATGTTAGGCCAATACC |
|||
Plasmodium falciparum species–specific PCR |
rFAL1: TTAAACTGGTTTGGGAAAACCAAATATATT | 205 |
(27) |
rFAL2: ACACAATGAACTCAATCATGACTACCCGTC |
|||
msp1, primary reaction |
Forward: CTAGAAGCTTTAGAAGATGCAGTATTG | Variable |
(28) |
Reverse: CTTAAATAGTATTCTAATTCAAGTGGATCA |
|||
K1 |
Forward: AAATGAAGAAGAAATTACTACAAAAGGTGC | Variable |
(28) |
Reverse: GCTTGCATCAGCTGGAGGGCTTGCACCAGA |
|||
MAD20 |
Forward: AAATGAAGGAACAAGTGGAACAGCTGTTAC | Variable |
(28) |
Reverse: ATCTGAAGGATTTGTACGTCTTGAATTACC |
|||
RO33 |
Forward: TAAAGGATGGAGCAAATACTCAAGTTGTTG | Variable |
(28) |
Reverse: CATCTGAAGGATTTGCAGCACCTGGAGATC |
|||
msp2, primary reaction |
Forward: ATGAAGGTAATTAAAACATTGTCTATTATA | Variable |
(28) |
Reverse: CTTTGTTACCATCGGTACATTCTT |
|||
FC27 |
Forward: AATACTAAGAGTGTAGGTGCARATGCTCCA | Variable |
(28) |
Reverse: TTTTATTTGGTGCATTGCCAGAACTTGAAC |
|||
IC/3D7 |
Forward: AGAAGTATGGCAGAAAGTAAKCCTYCTACT | Variable |
(28) |
Reverse: GATTGTAATTCGGGGGATTCAGTTTGTTCG |
|||
glurp, primary reaction |
Forward: TGAATTTGAAGATGTTCACACTGAAC | Variable |
(28) |
Reverse: GTGGAATTGCTTTTTCTTCAACACTAA |
|||
glurp | Forward: TGTTCACACTGAACAATTAGATTTAGATCA | Variable | (28) |
Reverse: GTGGAATTGCTTTTTCTTCAACACTAA |
*glurp, glutamate-rich protein; msp1, merozoite surface protein 1; msp2, merozoite surface protein 2.
References
- National Malaria Elimination Programme, National Population Commission, and National Bureau of Statistics, Federal Republic of Nigeria; ICT International. Nigeria malaria indicator survey 2015. 2016 Aug [cited 2018 Oct 18]. https://dhsprogram.com/pubs/pdf/MIS20/MIS20.pdf
- World Health Organization. World malaria report 2017. Geneva: The Organization; 2017 [cited 2018 Oct 18]. https://www.who.int/malaria/publications/world-malaria-report-2017
- United Nations Office for the Coordination of Humanitarian Affairs. Situation report no.1, 2014. 2014 [cited 2018 Oct 18]. http://www.unocha.org/nigeria
- Aribodor DN, Ugwuanyi IK, Aribodor OB. Challenges to achieving malaria elimination in Nigeria. Am J Public Health Res. 2016;4:38–41.
- Internal Displacement Monitoring Centre. GRID 2016. Global report on internal displacement. 2016 May [cited 2018 Oct 18]. http://www.internal-displacement.org/globalreport2016
- Emmanuelar I. Insurgency and humanitarian crisis in northern Nigeria: the case of Boko Haram. Afr J Pol Sci Int Relat. 2015;9:284–96. DOIGoogle Scholar
- Martens P, Hall L. Malaria on the move: human population movement and malaria transmission. Emerg Infect Dis. 2000;6:103–9. DOIPubMedGoogle Scholar
- Gu W, Killeen GF, Mbogo CM, Regens JL, Githure JI, Beier JC. An individual-based model of Plasmodium falciparum malaria transmission on the coast of Kenya. Trans R Soc Trop Med Hyg. 2003;97:43–50. DOIPubMedGoogle Scholar
- Osorio L, Todd J, Pearce R, Bradley DJ. The role of imported cases in the epidemiology of urban Plasmodium falciparum malaria in Quibdó, Colombia. Trop Med Int Health. 2007;12:331–41. DOIPubMedGoogle Scholar
- Conway DJ, Roper C, Oduola AMJ, Arnot DE, Kremsner PG, Grobusch MP, et al. High recombination rate in natural populations of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999;96:4506–11. DOIPubMedGoogle Scholar
- Meyer CG, May J, Arez AP, Gil JP, Do Rosario V. Genetic diversity of Plasmodium falciparum: asexual stages. Trop Med Int Health. 2002;7:395–408. DOIPubMedGoogle Scholar
- Kiwanuka GN. Genetic diversity in Plasmodium falciparum merozoite surface protein 1 and 2 coding genes and its implications in malaria epidemiology: a review of published studies from 1997-2007. J Vector Borne Dis. 2009;46:1–12.PubMedGoogle Scholar
- Lee SA, Yeka A, Nsobya SL, Dokomajilar C, Rosenthal PJ, Talisuna A, et al. Complexity of Plasmodium falciparum infections and antimalarial drug efficacy at 7 sites in Uganda. J Infect Dis. 2006;193:1160–3. DOIPubMedGoogle Scholar
- Kyabayinze DJ, Karamagi C, Kiggundu M, Kamya MR, Wabwire-Mangen F, Kironde F, et al. Multiplicity of Plasmodium falciparum infection predicts antimalarial treatment outcome in Ugandan children. Afr Health Sci. 2008;8:200–5.PubMedGoogle Scholar
- Amodu OK, Adeyemo AA, Ayoola OO, Gbadegesin RA, Orimadegun AE, Akinsola AK, et al. Genetic diversity of the msp-1 locus and symptomatic malaria in south-west Nigeria. Acta Trop. 2005;95:226–32. DOIPubMedGoogle Scholar
- Amodu OK, Oyedeji SI, Ntoumi F, Orimadegun AE, Gbadegesin RA, Olumese PE, et al. Complexity of the msp2 locus and the severity of childhood malaria, in south-western Nigeria. Ann Trop Med Parasitol. 2008;102:95–102. DOIPubMedGoogle Scholar
- Ajayi NA, Ukwaja KN. Possible artemisinin-based combination therapy-resistant malaria in Nigeria: a report of three cases. Rev Soc Bras Med Trop. 2013;46:525–7. DOIPubMedGoogle Scholar
- Ferreira MU, Kaneko O, Kimura M, Liu Q, Kawamoto F, Tanabe K. Allelic diversity at the merozoite surface protein-1 (MSP-1) locus in natural Plasmodium falciparum populations: a brief overview. Mem Inst Oswaldo Cruz. 1998;93:631–8. DOIPubMedGoogle Scholar
- Ferreira MU, Ribeiro WL, Tonon AP, Kawamoto F, Rich SM. Sequence diversity and evolution of the malaria vaccine candidate merozoite surface protein-1 (MSP-1) of Plasmodium falciparum. Gene. 2003;304:65–75. DOIPubMedGoogle Scholar
- Mwingira F, Nkwengulila G, Schoepflin S, Sumari D, Beck H-P, Snounou G, et al. Plasmodium falciparum msp1, msp2 and glurp allele frequency and diversity in sub-Saharan Africa. Malar J. 2011;10:79. DOIPubMedGoogle Scholar
- Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012;487:375–9. DOIPubMedGoogle Scholar
- Irawati N, Jamsari , Wirasti Y. Genetic diversity of merozoite surface protein-1 in Plasmodium falciparum field isolates from a mountain and coastal area in West Sumatera, Indonesia. J Pharm Biomed Sci. 2013;30:1061–4.
- Mawili-Mboumba DP, Mbondoukwe N, Adande E, Bouyou-Akotet MK. Allelic diversity of msp1 gene in Plasmodium falciparum from rural and urban areas of Gabon. Korean J Parasitol. 2015;53:413–9. DOIPubMedGoogle Scholar
- Jelinek T, Kilian AH, Westermeier A, Pröll S, Kabagambe G, Nothdurft HD, et al. Population structure of recrudescent Plasmodium falciparum isolates from western Uganda. Trop Med Int Health. 1999;4:476–80. DOIPubMedGoogle Scholar
- Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993;61:315–20. DOIPubMedGoogle Scholar
- Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg. 1999;60:687–92. DOIPubMedGoogle Scholar
- Snounou G, Fӓrnert A. Genotyping of Plasmodium falciparum parasites by PCR. In: Moll K, Ljungstrӧm I, Perlmann H, Scherf A, Wahlgren M, editors. Methods in malaria research. Manassas (VA): American Type Culture Collection; 2008. p. 238–42 [cited 2018 Oct 18]. https://ki.se/sites/default/files/methods_in_malaria_research.pdf
- Waters AP, McCutchan TF. Rapid, sensitive diagnosis of malaria based on ribosomal RNA. Lancet. 1989;1:1343–6. DOIPubMedGoogle Scholar
- Happi CT, Gbotosho GO, Sowunmi A, Falade CO, Akinboye DO, Gerena L, et al. Molecular analysis of Plasmodium falciparum recrudescent malaria infections in children treated with chloroquine in Nigeria. Am J Trop Med Hyg. 2004;70:20–6. DOIPubMedGoogle Scholar
- Olasehinde GI, Yah CS, Singh R, Ojuronbge OO, Ajayi AA, Valecha N, et al. Genetic diversity of Plasmodium falciparum field isolates from south western Nigeria. Afr Health Sci. 2012;12:355–61.PubMedGoogle Scholar
- Oyebola MK, Idowu ET, Olukosi YA, Iwalokun BA, Agomo CO, Ajibaye OO, et al. Genetic diversity and complexity of Plasmodium falciparum infections in Lagos, Nigeria. Asian Pac J Trop Biomed. 2014;4(Suppl 1):S87–91. DOIPubMedGoogle Scholar
- Bamidele Abiodun I, Oluwadun A, Olugbenga Ayoola A, Senapon Olusola I. Plasmodium falciparum merozoite surface proein-1 polymorphisms among asymptomatic sickle cell anemia patients in Nigeria. Acta Med Iran. 2016;54:44–53.PubMedGoogle Scholar
- Sam Wobo SO, Adekunle NO, Adeleke MA, Dedeke GA, Oke OA, Abimbola WA, et al. Epidemiological factors in prevalence of malaria parasites in primary health facilities attendants, Ogun State, Nigeria. Malar Chemother Control Elimin. 2014;3:
1000111 . - Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg. 2015;93(Suppl):57–68. DOIPubMedGoogle Scholar
- Oboh MA, Ndiaye D, Antony HA, Badiane AS, Singh US, Ali NA, et al. Status of artemisinin resistance in malaria parasite Plasmodium falciparum from molecular analysis of kelch13 gene in southwestern Nigeria. BioMed Res Int. 2018;2018:
2305062 . DOIPubMedGoogle Scholar - Ebenebe JC, Ntadom G, Ambe J, Wammanda R, Jiya N, Finomo F, et al.; For The Antimalarial Therapeutic Efficacy Monitoring Group National Malaria Elimination Programme The Federal Ministry Of Health Abuja Nigeria. Efficacy of artemisinin-based combination treatments of uncomplicated falciparum malaria in under-five year-old Nigerian children ten years following adoption as first line antimalarials. Am J Trop Med Hyg. 2018;99:649–64. DOIPubMedGoogle Scholar
- Flannery EL, Wang T, Akbari A, Corey VC, Gunawan F, Bright AT, et al. Next-generation sequencing of Plasmodium vivax patient sample shows evidence of direct evolution in drug-resistance genes. ACS Infect Dis. 2015;1:367–79. DOIPubMedGoogle Scholar
- Nag S, Dalgaard MD, Kofoed PE, Ursing J, Crespo M, Andersen LO, et al. High throughput resistance profiling of Plasmodium falciparum infections based on custom dual indexing and Illumina next generation sequencing-technology. Sci Rep. 2017;7:2398. DOIPubMedGoogle Scholar
- International Organization for Migration. Displacement tracking matrix (DTM) round 12 report-October 2016. 2016 Oct [cited 2018 Oct 18]. https://reliefweb.int/report/nigeria/displacement-tracking-matrix-dtm-round-12-report-october-2016
- International Committee of the Red Cross. Internal displacement in northeastern Nigeria. Kampala Convention. Supra note 6. Article 5(1). 2016 Dec [cited 2018 Oct 18]. http://www.icrc.org/where-we-work/africa/nigeria
- Oyedeji SI, Awobode HO, Anumudu C, Kun J. Genetic diversity of Plasmodium falciparum isolates from naturally infected children in north-central Nigeria using the merozoite surface protein-2 as molecular marker. Asian Pac J Trop Med. 2013;6:589–94. DOIPubMedGoogle Scholar
Page created: August 19, 2019
Page updated: August 19, 2019
Page reviewed: August 19, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.