Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 8—August 2019
Dispatch

Emergent Invasive Group A Streptococcus dysgalactiae subsp. equisimilis, United States, 2015–2018

Sopio Chochua, Joy Rivers, Saundra Mathis, Zhongya Li, Srinivasan Velusamy, Lesley McGee, Chris Van Beneden, Yuan Li, Benjamin J. Metcalf, and Bernard BeallComments to Author 
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Main Article

Figure 2

Ancestral recombination event depicting Streptococcus pyogenes group A carbohydrate gene donor (GAS/SP-5005; GenBank accession no. NC007297), group C S. dysgalactiae subsp. equisimilis recipient (GCS/SE7136; GenBank accession no. NCTC7136), and progeny group A S. dysgalactiae subsp. equisimilis progeny (GAS/SE/ST128) described in study of emergent invasive group A Streptococcus dysgalactiae subspecies equisimilis, United States, 2015–2018 . The deduced crossover points between the group A gene c

Figure 2. Ancestral recombination event depicting Streptococcus pyogenes group A carbohydrate gene donor (GAS/SP-5005; GenBank accession no. NC007297), group C S. dysgalactiae subsp. equisimilis recipient (GCS/SE7136; GenBank accession no. NCTC7136), and progeny group A S. dysgalactiae subsp. equisimilis progeny (GAS/SE/ST128) described in study of emergent invasive group A Streptococcus dysgalactiae subspecies equisimilis, United States, 2015–2018. The deduced crossover points between the group A gene cluster (red) donor and group C (green) recipient strains are shown. The 3 genes required for inclusion of the immunodominant N-acetylglucosamine side chain within the group A carbohydrate (gacI, gacJ, and gacK) are shown in red. The coordinates of the fragment transferred that is highly conserved between the donor and the progeny are indicated. The length of the 3 genomic regions are indicated. The gacE/gccE and ebsA genes are shown as green/red hybrids. The extra gcc cluster genes not conserved within the gac cluster are shown in blue. The relative sequence identities of the 3 different regions of progeny (bottom) gac cluster genes with the group A S. pyogenes donor (top) and group C S. equisimilis recipient (middle) are indicated. The middle segment (asterisk) indicates a range of 56%–77% sequence identity between each of the 8 structural genes (gacF–pepT) that were received intact from the S. pyogenes donor. The gac cluster genes are described in more detail in van Sorge et al. (1). Gene assignments are as follows: dnaG, DNA primase; rpoD, major RNA polymerase sigma factor; mscF, metal sulfur complex assembly factor; gacA-L, group A carbohydrate biosynthetic genes (putative functions described in van Sorge et al. [1]); gccA-N, group C carbohydrate biosynthetic genes. gccA-L are functional homologs of gacA-L. gccM and gccN putatively encode an additional glycosyl transferase and UDP-monosaccharide 4-epimerase, respectively; ebsA, pore-forming protein; fd, ferredoxin (complement strand); ctlK, cytidylate kinase; infC, translation initiation factor IF-3.

Main Article

References
  1. van Sorge  NM, Cole  JN, Kuipers  K, Henningham  A, Aziz  RK, Kasirer-Friede  A, et al. The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe. 2014;15:72940. DOIPubMedGoogle Scholar
  2. Chochua  S, Metcalf  BJ, Li  Z, Rivers  J, Mathis  S, Jackson  D, et al. Population and whole genome sequence based characterization of invasive group A streptococci recovered in the United States during 2015. MBio. 2017;8:e0142217. DOIPubMedGoogle Scholar
  3. Brandt  CM, Haase  G, Schnitzler  N, Zbinden  R, Lütticken  R. Characterization of blood culture isolates of Streptococcus dysgalactiae subsp. equisimilis possessing Lancefield’s group A antigen. J Clin Microbiol. 1999;37:41947.PubMedGoogle Scholar
  4. Tanaka  D, Isobe  J, Watahiki  M, Nagai  Y, Katsukawa  C, Kawahara  R, et al.; Working Group for Group A Streptococci in Japan. Genetic features of clinical isolates of Streptococcus dysgalactiae subsp. equisimilis possessing Lancefield’s group A antigen. J Clin Microbiol. 2008;46:15269. DOIPubMedGoogle Scholar
  5. Ahmad  Y, Gertz  RE Jr, Li  Z, Sakota  V, Broyles  LN, Van Beneden  C, et al. Genetic relationships deduced from emm and multilocus sequence typing of invasive Streptococcus dysgalactiae subsp. equisimilis and S. canis recovered from isolates collected in the United States. J Clin Microbiol. 2009;47:204654. DOIPubMedGoogle Scholar
  6. McMillan  DJ, Bessen  DE, Pinho  M, Ford  C, Hall  GS, Melo-Cristino  J, et al. Population genetics of Streptococcus dysgalactiae subspecies equisimilis reveals widely dispersed clones and extensive recombination. PLoS One. 2010;5:e11741. DOIPubMedGoogle Scholar
  7. Lancefield  RC. The antigenic complex of Streptococcus haemolyticus: I. Demonstration of a type-specific substance in extracts of Streptococcus haemolyticus. J Exp Med. 1928;47:91103. DOIPubMedGoogle Scholar
  8. Walker  MJ, Brouwer  S, Forde  BM, Worthing  KA, McIntyre  L, Sundac  L, et al. Detection of epidemic scarlet fever group A Streptococcus in Australia. Clin Infect Dis. 2019; Epub ahead of print. DOIPubMedGoogle Scholar
  9. Coligan  JE, Kindt  TJ, Krause  RM. Structure of the streptococcal groups A, A-variant and C carbohydrates. Immunochemistry. 1978;15:75560. DOIPubMedGoogle Scholar
  10. Enright  MC, Spratt  BG, Kalia  A, Cross  JH, Bessen  DE. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun. 2001;69:241627. DOIPubMedGoogle Scholar
  11. Broyles  LN, Van Beneden  C, Beall  B, Facklam  R, Shewmaker  PL, Malpiedi  P, et al. Population-based study of invasive disease due to beta-hemolytic streptococci of groups other than A and B. Clin Infect Dis. 2009;48:70612. DOIPubMedGoogle Scholar

Main Article

Page created: July 16, 2019
Page updated: July 16, 2019
Page reviewed: July 16, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external