Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 8—August 2019
Synopsis

Pseudomonas poae–Associated Fatal Septic Transfusion Reaction, Peoria, Illinois, USA, 2017

Therese S. Woodring and John J. FarrellComments to Author 
Author affiliations: University of Illinois College of Medicine, Peoria, Illinois, USA (T.S. Woodring, J.J. Farrell); OSF System Laboratory, Peoria (J.J. Farrell)

Main Article

Table 2

Centers for Disease Control and Prevention National Healthcare Safety Network criteria for establishing definite transfusion-transmitted infections*

Criteria
>1 of the following:
Evidence of the pathogen in 1) the transfused component, 2) the donor at the time of donation, 3) an additional component from the same donation, or 4) an additional recipient of a component of the same donation
AND
No other potential exposures to the pathogen be identified for the recipient
AND
Either evidence that the recipient was not infected with the pathogen before transfusion or evidence that the identified pathogens are related by molecular or extended phenotypic comparison testing

*See (8).

Main Article

References
  1. Centers for Disease Control and Prevention. Blood safety. Diseases and organisms. 2017 [cited 2018 Nov 25]. https://www.cdc.gov/bloodsafety/bbp/diseases-organisms.html
  2. Food and Drug Administration. Transfusion/donation fatalities. 2018 [cited 2017 Nov 18]. https://www.fda.gov/vaccines-blood-biologics/report-problem-center-biologics-evaluation-research/transfusiondonation-fatalities
  3. Haass  KA, Sapiano  MRP, Savinkina  A, Kuehnert  MJ, Basavaraju  SV. Transfusion-Transmitted Infections Reported to the National Healthcare Safety Network Hemovigilance Module. Transfus Med Rev. 2019;33:8491. DOIPubMedGoogle Scholar
  4. Kuehnert  M, Basavaraju  SV. Transfusion-associated infections. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 3351–60.
  5. Silverglied  AJ. Pathogen inactivation of blood products. 2018 May 23 [cited 2018 Nov 25]. https://www.uptodate.com/contents/pathogen-inactivation-of-blood-products
  6. D’Alessandro  A, D’Amici  GM, Vaglio  S, Zolla  L. Time-course investigation of SAGM-stored leukocyte-filtered red bood cell concentrates: from metabolism to proteomics. Haematologica. 2012;97:10715. DOIPubMedGoogle Scholar
  7. D’Alessandro  A, Kriebardis  AG, Rinalducci  S, Antonelou  MH, Hansen  KC, Papassideri  IS, et al. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 2015;55:20519. DOIPubMedGoogle Scholar
  8. Centers for Disease Control and Prevention. National Healthcare Safety Network biovigilance component hemovigilance module surveillance protocol. 2018 Apr [cited 2018 Nov 25]. https://www.cdc.gov/nhsn/pdfs/biovigilance/bv-hv-protocol-current.pdf
  9. De Coster  W, D’Hert  S, Schultz  DT, Cruts  M, Van Broeckhoven  C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:26669. DOIPubMedGoogle Scholar
  10. Koren  S, Walenz  BP, Berlin  K, Miller  JR, Bergman  NH, Phillippy  AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:72236. DOIPubMedGoogle Scholar
  11. Wick  RR, Schultz  MB, Zobel  J, Holt  KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:33502. DOIPubMedGoogle Scholar
  12. Loman  NJ, Quick  J, Simpson  JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:7335. DOIPubMedGoogle Scholar
  13. Seemann  T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:20689. DOIPubMedGoogle Scholar
  14. Mulet  M, Lalucat  J, García-Valdés  E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol. 2010;12:151330.PubMedGoogle Scholar
  15. Kearse  M, Moir  R, Wilson  A, Stones-Havas  S, Cheung  M, Sturrock  S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:16479. DOIPubMedGoogle Scholar
  16. Bodilis  J, Nsigue-Meilo  S, Besaury  L, Quillet  L. Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in Pseudomonas. PLoS One. 2012;7:e35647. DOIPubMedGoogle Scholar
  17. Panicker  G, Mojib  N, Nakatsuji  T, Aislabie  J, Bej  AK. Occurrence and distribution of capB in Antarctic microorganisms and study of its structure and regulation in the Antarctic biodegradative Pseudomonas sp. 30/3. Extremophiles. 2010;14:17183. DOIPubMedGoogle Scholar
  18. Cornelis  P. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol. 2010;86:163745. DOIPubMedGoogle Scholar
  19. Blin  K, Wolf  T, Chevrette  MG, Lu  X, Schwalen  CJ, Kautsar  SA, et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45(W1):W3641. DOIPubMedGoogle Scholar
  20. Behrendt  U, Ulrich  A, Schumann  P. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol. 2003;53:14619. DOIPubMedGoogle Scholar
  21. Vyas  P, Rahi  P, Gulati  A. Stress tolerance and genetic variability of phosphate-solubilizing fluorescent Pseudomonas from the cold deserts of the trans-Himalayas. Microb Ecol. 2009;58:42534. DOIPubMedGoogle Scholar
  22. Gulati  A, Rahi  P, Vyas  P. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol. 2008;56:739. DOIPubMedGoogle Scholar
  23. Cho  KM, Hong  SY, Lee  SM, Kim  YH, Kahng  GG, Lim  YP, et al. Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb Ecol. 2007;54:34151. DOIPubMedGoogle Scholar
  24. Khan  AH, Anees  M, Arshad  M, Muhammad  YS, Iqbal  M, Yousaf  S. Effects of illuminance and nutrients on bacterial photo-physiology of hydrocarbon degradation. Sci Total Environ. 2016;557-558:70511. DOIPubMedGoogle Scholar
  25. Collard  K, White  D, Copplestone  A. The influence of storage age on iron status, oxidative stress and antioxidant protection in paediatric packed cell units. Blood Transfus. 2014;12:2109.PubMedGoogle Scholar
  26. Brecher  ME, Hay  SN. Bacterial contamination of blood components. Clin Microbiol Rev. 2005;18:195204. DOIPubMedGoogle Scholar
  27. Chaffin  DJ, Kuehnert  MJ. Pseudomonas fluorescens–related septic transfusion reaction resulting from contaminated cold cloths. Transfusion. 2002;42:41S.
  28. de Goffau  MC, Lager  S, Salter  SJ, Wagner  J, Kronbichler  A, Charnock-Jones  DS, et al. Recognizing the reagent microbiome. Nat Microbiol. 2018;3:8513. DOIPubMedGoogle Scholar
  29. van der Poll  T, van de Veerdonk  FL, Scicluna  BP, Netea  MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17:40720. DOIPubMedGoogle Scholar
  30. Bryant  CE, Spring  DR, Gangloff  M, Gay  NJ. The molecular basis of the host response to lipopolysaccharide. Nat Rev Microbiol. 2010;8:814. DOIPubMedGoogle Scholar
  31. Opal  SM. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int J Med Microbiol. 2007;297:36577. DOIPubMedGoogle Scholar
  32. Chen  K, Geng  S, Yuan  R, Diao  N, Upchurch  Z, Li  L. Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality. EBioMedicine. 2015;2:32433. DOIPubMedGoogle Scholar
  33. Wheeler  DS, Lahni  PM, Denenberg  AG, Poynter  SE, Wong  HR, Cook  JA, et al. Induction of endotoxin tolerance enhances bacterial clearance and survival in murine polymicrobial sepsis. Shock. 2008;30:26773. DOIPubMedGoogle Scholar
  34. Kim  H, Jung  BJ, Kim  JY, Chung  DK. Differential effects of low and high doses of lipoteichoic acid on lipopolysaccharide-induced interleukin-6 production. Inflamm Res. 2014;63:41928. DOIPubMedGoogle Scholar
  35. Roth  VR, Arduino  MJ, Nobiletti  J, Holt  SC, Carson  LA, Wolf  CF, et al. Transfusion-related sepsis due to Serratia liquefaciens in the United States. Transfusion. 2000;40:9315. DOIPubMedGoogle Scholar

Main Article

Page created: July 16, 2019
Page updated: July 16, 2019
Page reviewed: July 16, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external