Influenza A Virus Infections in Dromedary Camels, Nigeria and Ethiopia, 2015–2017
Daniel K.W. Chu
1, Ranawaka A.P.M. Perera
1, Abraham Ali
1, Jamiu O. Oladipo, Gezahegne Mamo, Ray T.Y. So, Ziqi Zhou, Yen Yeen Chor, Chak Kai Chan, Desalegn Belay, Adamu Tayachew, Mesfin Mengesha, Feyesa Regassa, Nga Ting Lam, Leo L.M. Poon, and Malik Peiris
Author affiliations: The University of Hong Kong, Hong Kong, China (D.K.W. Chu, R.A.P.M. Perera, J.O. Oladipo, R.T.Y. So, Z. Zhou, Y.Y. Chor, C.K. Chan, N.T. Lam, L.L.M. Poon, M. Peiris); Ethiopian Public Health Institute, Addis Ababa, Ethiopia (A. Ali, D. Belay, A. Tayachew, M. Mengesha, F. Regassa); Addis Ababa University, Bishoftu, Ethiopia (G. Mamo)
Main Article
Figure
Figure. Maximum-likelihood phylogenetic tree showing relationship of influenza A(H1N1)pdm09 virus from dromedary camel, Nigeria, January 2016 (red circle), relative to other influenza A(H1N1)pdm09 viruses from humans worldwide on the basis of the hemagglutinin gene. Tree was constructed by using a general time-reversible model with FastTree (https://www.geneious.com/plugins/fasttree-plugin) and PhyML (http://www.atgc-montpellier.fr/phyml) (Appendix,). Tree is rooted with an influenza A(H1N1)pdm09 virus collected in 2009. Bootstrap support values for the major branches are shown. Scale bar indicates number of nucleotide changes per base pair.
Main Article
Page created: December 18, 2019
Page updated: December 18, 2019
Page reviewed: December 18, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.