Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 10—October 2020
Dispatch

Basic Reproduction Number of Chikungunya Virus Transmitted by Aedes Mosquitoes

Najmul HaiderComments to Author , Francesco Vairo, Giuseppe Ippolito, Alimuddin Zumla, and Richard A. Kock
Author affiliations: The Royal Veterinary College, University of London, London, UK (N. Haider, R.A. Kock); National Institute for Infectious Diseases Lazzaro Spallanzani, Rome, Italy (F. Vairo, G. Ippolito); University College London, London (A. Zumla)

Main Article

Table

The basic reproduction number (R0) of chikungunya virus estimated from empirical outbreak data, 2000–2019

Year Country or region Continent R0 range (95% CI) Mosquito species Lineage E1-A226V mutation* Reference
2006 La Réunion Africa 4.1 Ae. albopictus Indian Ocean Y (3)
2006 La Réunion Africa 0.9–2.3 Ae. albopictus Indian Ocean Y (7)
2006 La Réunion Africa 1.5–1.8 Ae. albopictus Indian Ocean Y (5)
2006 La Réunion Africa 3.4 Ae. albopictus Indian Ocean Y (6)
2006 La Réunion Africa 3.7 (2–11) Ae. albopictus Indian Ocean Y (8)
2007 Italy Europe 3.3 (1.8–6.0) Ae. albopictus Indian Ocean Mixed (10)
2012 Cambodia Asia 6.5 (6.2–6.8) Ae. aegypti Asian Y (1)
2014 Italy Europe 2.1 (1.5–2.6) Ae. albopictus Indian Ocean N (9)
2014 Venezuela South America 3.7 Ae. aegypti Asian N (11)
2015 Mexico North America 3.44 Ae. aegypti Asian N
2014
Colombia
South America
1–9
Ae. aegypti
Asian
N
(12)
*Envelope 1 A226V gene.
†N. Báez-Hernández et al., unpub data, https://www.biorxiv.org/content/10.1101/122556v1.

Main Article

References
  1. Robinson  M, Conan  A, Duong  V, Ly  S, Ngan  C, Buchy  P, et al. A model for a chikungunya outbreak in a rural Cambodian setting: implications for disease control in uninfected areas. PLoS Negl Trop Dis. 2014;8:e3120. DOIPubMedGoogle Scholar
  2. Vairo  F, Haider  N, Kock  R, Ntoumi  F, Ippolito  G, Zumla  A. Chikungunya: epidemiology, pathogenesis, clinical features, management, and prevention. Infect Dis Clin North Am. 2019;33:100325. DOIPubMedGoogle Scholar
  3. Yakob  L, Clements  ACA. A mathematical model of chikungunya dynamics and control: the major epidemic on Réunion Island. PLoS One. 2013;8:e57448. DOIPubMedGoogle Scholar
  4. Rodríguez-Morales  AJ, Cardona-Ospina  JA, Fernanda Urbano-Garzón  S, Sebastian Hurtado-Zapata  J. Prevalence of post-chikungunya infection chronic inflammatory arthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2016;68:184958. DOIPubMedGoogle Scholar
  5. Dumont  Y, Chiroleu  F. Vector control for the Chikungunya disease. Math Biosci Eng. 2010;7:31345. DOIPubMedGoogle Scholar
  6. Bacaër  N. Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population. Bull Math Biol. 2007;69:106791. DOIPubMedGoogle Scholar
  7. Dumont  Y, Chiroleu  F, Domerg  C. On a temporal model for the Chikungunya disease: modeling, theory and numerics. Math Biosci. 2008;213:8091. DOIPubMedGoogle Scholar
  8. Boëlle  P-Y, Thomas  G, Vergu  E, Renault  P, Valleron  A-J, Flahault  A. Investigating transmission in a two-wave epidemic of Chikungunya fever, Réunion Island. Vector Borne Zoonotic Dis. 2008;8:20717. DOIPubMedGoogle Scholar
  9. Manica  M, Guzzetta  G, Poletti  P, Filipponi  F, Solimini  A, Caputo  B, et al. Transmission dynamics of the ongoing chikungunya outbreak in Central Italy: from coastal areas to the metropolitan city of Rome, summer 2017. Euro Surveill. 2017;22:1700685. DOIPubMedGoogle Scholar
  10. Poletti  P, Messeri  G, Ajelli  M, Vallorani  R, Rizzo  C, Merler  S. Transmission potential of chikungunya virus and control measures: the case of Italy. PLoS One. 2011;6:e18860. DOIPubMedGoogle Scholar
  11. Lizarazo  E, Vincenti-Gonzalez  M, Grillet  ME, Bethencourt  S, Diaz  O, Ojeda  N, et al. Spatial dynamics of chikungunya virus, Venezuela, 2014. Emerg Infect Dis. 2019;25:67280. DOIPubMedGoogle Scholar
  12. Peña-García  VH, Christofferson  RC. Correlation of the basic reproduction number (R0) and eco-environmental variables in Colombian municipalities with chikungunya outbreaks during 2014-2016. PLoS Negl Trop Dis. 2019;13:e0007878. DOIPubMedGoogle Scholar
  13. Dias  JP, Costa  MDCN, Campos  GS, Paixão  ES, Natividade  MS, Barreto  FR, et al. Seroprevalence of chikungunya virus after its emergence in Brazil. Emerg Infect Dis. 2018;24:61724. DOIPubMedGoogle Scholar
  14. Vega-Rúa  A, Zouache  K, Girod  R, Failloux  A-B, Lourenço-de-Oliveira  R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol. 2014;88:6294306. DOIPubMedGoogle Scholar

Main Article

Page created: July 23, 2020
Page updated: September 17, 2020
Page reviewed: September 17, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external