Volume 26, Number 10—October 2020
Dispatch
Basic Reproduction Number of Chikungunya Virus Transmitted by Aedes Mosquitoes
Table
Year | Country or region | Continent | R0 range (95% CI) | Mosquito species | Lineage | E1-A226V mutation* | Reference |
---|---|---|---|---|---|---|---|
2006 | La Réunion | Africa | 4.1 | Ae. albopictus | Indian Ocean | Y | (3) |
2006 | La Réunion | Africa | 0.9–2.3 | Ae. albopictus | Indian Ocean | Y | (7) |
2006 | La Réunion | Africa | 1.5–1.8 | Ae. albopictus | Indian Ocean | Y | (5) |
2006 | La Réunion | Africa | 3.4 | Ae. albopictus | Indian Ocean | Y | (6) |
2006 | La Réunion | Africa | 3.7 (2–11) | Ae. albopictus | Indian Ocean | Y | (8) |
2007 | Italy | Europe | 3.3 (1.8–6.0) | Ae. albopictus | Indian Ocean | Mixed | (10) |
2012 | Cambodia | Asia | 6.5 (6.2–6.8) | Ae. aegypti | Asian | Y | (1) |
2014 | Italy | Europe | 2.1 (1.5–2.6) | Ae. albopictus | Indian Ocean | N | (9) |
2014 | Venezuela | South America | 3.7 | Ae. aegypti | Asian | N | (11) |
2015 | Mexico | North America | 3.44 | Ae. aegypti | Asian | N | † |
2014 |
Colombia |
South America |
1–9 |
Ae. aegypti |
Asian |
N |
(12) |
*Envelope 1 A226V gene. †N. Báez-Hernández et al., unpub data, https://www.biorxiv.org/content/10.1101/122556v1. |
References
- Robinson M, Conan A, Duong V, Ly S, Ngan C, Buchy P, et al. A model for a chikungunya outbreak in a rural Cambodian setting: implications for disease control in uninfected areas. PLoS Negl Trop Dis. 2014;8:
e3120 . DOIPubMedGoogle Scholar - Vairo F, Haider N, Kock R, Ntoumi F, Ippolito G, Zumla A. Chikungunya: epidemiology, pathogenesis, clinical features, management, and prevention. Infect Dis Clin North Am. 2019;33:1003–25. DOIPubMedGoogle Scholar
- Yakob L, Clements ACA. A mathematical model of chikungunya dynamics and control: the major epidemic on Réunion Island. PLoS One. 2013;8:
e57448 . DOIPubMedGoogle Scholar - Rodríguez-Morales AJ, Cardona-Ospina JA, Fernanda Urbano-Garzón S, Sebastian Hurtado-Zapata J. Prevalence of post-chikungunya infection chronic inflammatory arthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2016;68:1849–58. DOIPubMedGoogle Scholar
- Dumont Y, Chiroleu F. Vector control for the Chikungunya disease. Math Biosci Eng. 2010;7:313–45. DOIPubMedGoogle Scholar
- Bacaër N. Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population. Bull Math Biol. 2007;69:1067–91. DOIPubMedGoogle Scholar
- Dumont Y, Chiroleu F, Domerg C. On a temporal model for the Chikungunya disease: modeling, theory and numerics. Math Biosci. 2008;213:80–91. DOIPubMedGoogle Scholar
- Boëlle P-Y, Thomas G, Vergu E, Renault P, Valleron A-J, Flahault A. Investigating transmission in a two-wave epidemic of Chikungunya fever, Réunion Island. Vector Borne Zoonotic Dis. 2008;8:207–17. DOIPubMedGoogle Scholar
- Manica M, Guzzetta G, Poletti P, Filipponi F, Solimini A, Caputo B, et al. Transmission dynamics of the ongoing chikungunya outbreak in Central Italy: from coastal areas to the metropolitan city of Rome, summer 2017. Euro Surveill. 2017;22:17–00685. DOIPubMedGoogle Scholar
- Poletti P, Messeri G, Ajelli M, Vallorani R, Rizzo C, Merler S. Transmission potential of chikungunya virus and control measures: the case of Italy. PLoS One. 2011;6:
e18860 . DOIPubMedGoogle Scholar - Lizarazo E, Vincenti-Gonzalez M, Grillet ME, Bethencourt S, Diaz O, Ojeda N, et al. Spatial dynamics of chikungunya virus, Venezuela, 2014. Emerg Infect Dis. 2019;25:672–80. DOIPubMedGoogle Scholar
- Peña-García VH, Christofferson RC. Correlation of the basic reproduction number (R0) and eco-environmental variables in Colombian municipalities with chikungunya outbreaks during 2014-2016. PLoS Negl Trop Dis. 2019;13:
e0007878 . DOIPubMedGoogle Scholar - Dias JP, Costa MDCN, Campos GS, Paixão ES, Natividade MS, Barreto FR, et al. Seroprevalence of chikungunya virus after its emergence in Brazil. Emerg Infect Dis. 2018;24:617–24. DOIPubMedGoogle Scholar
- Vega-Rúa A, Zouache K, Girod R, Failloux A-B, Lourenço-de-Oliveira R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol. 2014;88:6294–306. DOIPubMedGoogle Scholar
Page created: July 23, 2020
Page updated: September 17, 2020
Page reviewed: September 17, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.