Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 11—November 2020
Research

Streptococcus pneumoniae Serotype 12F-CC4846 and Invasive Pneumococcal Disease after Introduction of 13-Valent Pneumococcal Conjugate Vaccine, Japan, 2015–2017

Satoshi NakanoComments to Author , Takao Fujisawa, Yutaka Ito, Bin Chang, Yasufumi Matsumura, Masaki Yamamoto, Shigeru Suga, Makoto Ohnishi, and Miki Nagao
Author affiliations: Kyoto University Graduate School of Medicine, Kyoto, Japan (S. Nakano, Y. Matsumura, M. Yamamoto, M. Nagao); National Hospital Organization Mie National Hospital, Tsu, Japan (T. Fujisawa, S. Suga); Nagoya City University Graduate School of Medical Science, Nagoya, Japan (Y. Ito); National Institute of Infectious Diseases, Tokyo, Japan (B. Chang, M. Ohnishi)

Main Article

Table

Antimicrobial susceptibilities of Streptococcus pneumoniae serotype 12F isolates recovered in Japan, 2017*

Sequence type No. isolates MIC, μg/mL
Penicillin
Cefotaxime
Meropenem
Erythromycin
Levofloxacin
<0.06 0.12 0.25 <0.06 0.12 0.25 <0.06 <0.06 >128 0.5 1
4846 59 16 42 1 54 3 2 59 0 59 4 55
6945 16 15 1 0 16 0 0 16 3 13 0 16

*Susceptibility categories were based on Clinical and Laboratory Standard 2015 antimicrobial susceptibility testing standards for S. pneumoniae (10). If categories for meningitis are available, they are shown. The standards are penicillin <0.06 susceptible, >0.12 resistant; cefotaxime <0.5 susceptible, 1.0 intermediate, >2 resistant; meropenem <0.25 susceptible, 0.5 intermediate, >1.0 resistant; erythromycin <0.25 susceptible, 0.5 intermediate, >1.0 resistant; levofloxacin <2.0 susceptible, 4.0 intermediate, >8.0 resistant.

Main Article

References
  1. Wahl  B, O’Brien  KL, Greenbaum  A, Majumder  A, Liu  L, Chu  Y, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15. Lancet Glob Health. 2018;6:e74457. DOIPubMed
  2. Geno  KA, Gilbert  GL, Song  JY, Skovsted  IC, Klugman  KP, Jones  C, et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev. 2015;28:87199. DOIPubMed
  3. Waight  PA, Andrews  NJ, Ladhani  NJ, Sheppard  CL, Slack  MP, Miller  E. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis. 2015;15:629. DOIPubMed
  4. Abat  C, Raoult  D, Rolain  JM. Dramatic decrease of Streptococcus pneumoniae infections in Marseille, 2003-2014. Eur J Clin Microbiol Infect Dis. 2015;34:20817. DOIPubMed
  5. Camilli  R, D’Ambrosio  F, Del Grosso  M, Pimentel de Araujo  F, Caporali  MG, Del Manso  M, et al.; Pneumococcal Surveillance Group. Impact of pneumococcal conjugate vaccine (PCV7 and PCV13) on pneumococcal invasive diseases in Italian children and insight into evolution of pneumococcal population structure. Vaccine. 2017;35(35 Pt B):458793. DOIPubMed
  6. Moore  MR, Link-Gelles  R, Schaffner  W, Lynfield  R, Holtzman  C, Harrison  LH, et al. Effectiveness of 13-valent pneumococcal conjugate vaccine for prevention of invasive pneumococcal disease in children in the USA: a matched case-control study. Lancet Respir Med. 2016;4:399406. DOIPubMed
  7. Chiba  N, Morozumi  M, Shouji  M, Wajima  T, Iwata  S, Ubukata  K; Invasive Pneumococcal Diseases Surveillance Study Group. Changes in capsule and drug resistance of Pneumococci after introduction of PCV7, Japan, 2010-2013. Emerg Infect Dis. 2014;20:11329. DOIPubMed
  8. Nakano  S, Fujisawa  T, Ito  Y, Chang  B, Suga  S, Noguchi  T, et al. Serotypes, antimicrobial susceptibility, and molecular epidemiology of invasive and non-invasive Streptococcus pneumoniae isolates in paediatric patients after the introduction of 13-valent conjugate vaccine in a nationwide surveillance study conducted in Japan in 2012-2014. Vaccine. 2016;34:6776. DOIPubMed
  9. Nakano  S, Fujisawa  T, Ito  Y, Chang  B, Matsumura  Y, Yamamoto  M, et al. Nationwide surveillance of paediatric invasive and non-invasive pneumococcal disease in Japan after the introduction of the 13-valent conjugated vaccine, 2015-2017. Vaccine. 2020;38:181824. DOIPubMed
  10. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. CLSI document M100–S25. Wayne (PA): The Institute; 2015.
  11. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMed
  12. Li  H, Durbin  R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:175460. DOIPubMed
  13. Chang  B, Morita  M, Lee  KI, Ohnishi  M. Complete genome sequence of a sequence type 4846 Streptococcus pneumoniae serotype 12F strain isolated from a meningitis case in Japan. Microbiol Resour Announc. 2019;8:e0163218. DOIPubMed
  14. Altschul  SF, Gish  W, Miller  W, Myers  EW, Lipman  DJ. Basic local alignment search tool. J Mol Biol. 1990;215:40310. DOIPubMed
  15. Metcalf  BJ, Gertz  RE Jr, Gladstone  RA, Walker  H, Sherwood  LK, Jackson  D, et al. Active Bacterial Core surveillance team. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin Microbiol Infect. 2016;22:60.e929. DOI
  16. Metcalf  BJ, Chochua  S, Gertz  RE Jr, Li  Z, Walker  H, Tran  T, et al. Active Bacterial Core surveillance team. Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin Microbiol Infect. 2016;22:1002.e18. DOI
  17. Li  Y, Metcalf  BJ, Chochua  S, Li  Z, Gertz  RE Jr, Walker  H, et al. Penicillin-binding protein transpeptidase signatures for tracking and predicting β-lactam resistance levels in Streptococcus pneumoniae. MBio. 2016;7:e0075616. DOIPubMed
  18. Centers for Disease Control and Prevention. Minimum inhibitory concentrations predicted by the penicillin binding protein [cited 2020 Aug 17]. https://www.cdc.gov/streplab/pneumococcus/mic.html
  19. Nakano  S, Fujisawa  T, Ito  Y, Chang  B, Matsumura  Y, Yamamoto  M, et al. Spread of meropenem-resistant Streptococcus pneumoniae serotype 15A-ST63 clone in Japan, 2012–2014. Emerg Infect Dis. 2018;24:27583. DOIPubMed
  20. Nakano  S, Fujisawa  T, Ito  Y, Chang  B, Matsumura  Y, Yamamoto  M, et al. Whole-genome sequencing analysis of multidrug-resistant serotype 15A Streptococcus pneumoniae in Japan and the emergence of a highly resistant serotype 15A-ST9084 clone. Antimicrob Agents Chemother. 2019;63:e0257918. DOIPubMed
  21. Nakano  S, Fujisawa  T, Ito  Y, Chang  B, Matsumura  Y, Yamamoto  M, et al. Penicillin-binding protein typing, antibiotic resistance gene identification, and molecular phylogenetic analysis of meropenem-resistant Streptococcus pneumoniae serotype 19A-CC3111 strains in Japan. Antimicrob Agents Chemother. 2019;63:e007119. DOIPubMed
  22. Gladstone  RA, Lo  SW, Lees  JA, Croucher  NJ, van Tonder  AJ, Corander  J, et al.; Global Pneumococcal Sequencing Consortium. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine. 2019;43:33846. DOIPubMed
  23. Seemann  T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:20689. DOIPubMed
  24. Carver  T, Berriman  M, Tivey  A, Patel  C, Böhme  U, Barrell  BG, et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics. 2008;24:26726. DOIPubMed
  25. Kozlov  AM, Darriba  D, Flouri  T, Morel  B, Stamatakis  A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:44535. DOIPubMed
  26. Stamatakis  A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:13123. DOIPubMed
  27. Croucher  NJ, Page  AJ, Connor  TR, Delaney  AJ, Keane  JA, Bentley  SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15. DOIPubMed
  28. Page  AJ, Cummins  CA, Hunt  M, Wong  VK, Reuter  S, Holden  MT, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:36913. DOIPubMed
  29. Brynildsrud  O, Bohlin  J, Scheffer  L, Eldholm  V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016;17:238. DOIPubMed
  30. Drummond  AJ, Rambaut  A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. DOIPubMed
  31. Lemey  P, Rambaut  A, Drummond  AJ, Suchard  MA. Bayesian phylogeography finds its roots. PLOS Comput Biol. 2009;5:e1000520. DOIPubMed
  32. Bielejec  F, Baele  G, Vrancken  B, Suchard  MA, Rambaut  A, Lemey  P. SpreaD3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol Biol Evol. 2016;33:21679. DOIPubMed
  33. Brenciani  A, Bacciaglia  A, Vecchi  M, Vitali  LA, Varaldo  PE, Giovanetti  E. Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother. 2007;51:120916. DOIPubMed
  34. Schroeder  MR, Stephens  DS. Macrolide resistance in Streptococcus pneumoniae. Front Cell Infect Microbiol. 2016;6:98. DOIPubMed
  35. Adam  DC, Scotch  M, MacIntyre  CR. Bayesian phylogeography and pathogenic characterization of smallpox based on HA, ATI, and CrmB genes. Mol Biol Evol. 2018;35:260717. DOIPubMed
  36. Ohkusu  M, Takeuchi  N, Ishiwada  N, Ohkusu  K. Clonal spread of serotype 12F ST4846 Streptococcus pneumoniae. J Med Microbiol. 2019;68:138390. DOIPubMed
  37. Ikuse  T, Habuka  R, Wakamatsu  Y, Nakajima  T, Saitoh  N, Yoshida  H, et al. Local outbreak of Streptococcus pneumoniae serotype 12F caused high morbidity and mortality among children and adults. Epidemiol Infect. 2018;146:17936. DOIPubMed
  38. Nakanishi  N, Yonezawa  T, Tanaka  S, Shirouzu  Y, Naito  Y, Ozaki  A, et al. Assessment of the local clonal spread of Streptococcus pneumoniae serotype 12F caused invasive pneumococcal diseases among children and adults. J Infect Public Health. 2019;12:86772. DOIPubMed
  39. Shimbashi  R, Chang  B, Tanabe  Y, Takeda  H, Watanabe  H, Kubota  T, et al.; Adult IPD Study Group. Epidemiological and clinical features of invasive pneumococcal disease caused by serotype 12F in adults, Japan. PLoS One. 2019;14:e0212418. DOIPubMed
  40. Linkevicius  M, Cristea  V, Siira  L, Mäkelä  H, Toropainen  M, Pitkäpaasi  M, et al. Outbreak of invasive pneumococcal disease among shipyard workers, Turku, Finland, May to November 2019. Euro Surveill. 2019;24:1900681. DOIPubMed
  41. González-Díaz  A, Càmara  J, Ercibengoa  M, Cercenado  E, Larrosa  N, Quesada  MD, et al. Emerging non-13-valent pneumococcal conjugate vaccine (PCV13) serotypes causing adult invasive pneumococcal disease in the late-PCV13 period in Spain. Clin Microbiol Infect. 2020;26:7539. DOIPubMed
  42. Golden  AR, Baxter  MR, Davidson  RJ, Martin  I, Demczuk  W, Mulvey  MR, et al. Comparison of antimicrobial resistance patterns in Streptococcus pneumoniae from respiratory and blood cultures in Canadian hospitals from 2007–16. J Antimicrob Chemother. 2019;74(Suppl_4):iv39–iv47. DOI
  43. Valdarchi  C, Dorrucci  M, Mancini  F, Farchi  F, Pimentel de Araujo  F, Corongiu  M, et al.; FIMMG Group. Pneumococcal carriage among adults aged 50 years and older with co-morbidities attending medical practices in Rome, Italy. Vaccine. 2019;37:5096103. DOIPubMed
  44. Deng  X, Peirano  G, Schillberg  E, Mazzulli  T, Gray-Owen  SD, Wylie  JL, et al. Whole-genome sequencing reveals the origin and rapid evolution of an emerging outbreak strain of Streptococcus pneumoniae 12F. Clin Infect Dis. 2016;62:112632. DOIPubMed
  45. Balsells  E, Dagan  R, Yildirim  I, Gounder  PP, Steens  A, Muñoz-Almagro  C, et al. The relative invasive disease potential of Streptococcus pneumoniae among children after PCV introduction: A systematic review and meta-analysis. J Infect. 2018;77:36878. DOIPubMed

Main Article

Page created: August 20, 2020
Page updated: October 17, 2020 10:14 PM EDT
Page reviewed: October 17, 2020 10:14 PM EDT
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external