Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 9—September 2020
Research

Molecular Description of a Novel Orientia Species Causing Scrub Typhus in Chile

Katia AbarcaComments to Author , Constanza Martínez-Valdebenito1, Jenniffer Angulo1, Ju Jiang, Christina M. Farris, Allen L. Richards, Gerardo Acosta-Jamett, and Thomas WeitzelComments to Author 
Author affiliations: Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile (K. Abarca, C. Martínez-Valdebenito, J. Angulo); Naval Medical Research Center, Silver Spring, Maryland, USA (J. Jiang, C.M. Farris); Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA (A.L. Richards); Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile (G. Acosta-Jamett); Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago (T. Weitzel)

Main Article

Figure 1

Phylogenetic analyses of sequences of the 16S rRNA gene (rrs) from scrub typhus cases in Chile compared with those from different Orientia and Rickettsia species and other microorganisms. We inferred the evolutionary history by using the maximum-likelihood method based on the Kimura 2-parameter model (21), according to the Bayesian information criterion for these sequences. The analysis involved 39 nt sequences and a total of 875 positions in the final dataset. The trees is drawn to scale, with

Figure 1. Phylogenetic analyses of sequences of the 16S rRNA gene (rrs) from scrub typhus cases in Chile compared with those from different Orientia and Rickettsia species and other microorganisms. We inferred the evolutionary history by using the maximum-likelihood method based on the Kimura 2-parameter model (21), according to the Bayesian information criterion for these sequences. The analysis involved 39 nt sequences and a total of 875 positions in the final dataset. The trees is drawn to scale, with branch lengths measured in the number of substitutions per site. All positions containing gaps and missing data were eliminated. For isolates from the cases in this study, the suffix “M” indicates an origin in mainland Chile and “I” an origin on Chiloé Island; these isolates clustered into a proposed new species provisionally named Candidatus Orientia chiloensis. GenBank accession numbers are indicated for reference sequences. Scale bar indicates nucleotide divergence.

Main Article

References
  1. Kelly  DJ, Fuerst  PA, Ching  WM, Richards  AL. Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi. Clin Infect Dis. 2009;48(Suppl 3):S20330. DOIPubMedGoogle Scholar
  2. Kim  G, Ha  NY, Min  CK, Kim  HI, Yen  NT, Lee  KH, et al. Diversification of Orientia tsutsugamushi genotypes by intragenic recombination and their potential expansion in endemic areas. PLoS Negl Trop Dis. 2017;11:e0005408. DOIPubMedGoogle Scholar
  3. Paris  DH, Shelite  TR, Day  NP, Walker  DH. Unresolved problems related to scrub typhus: a seriously neglected life-threatening disease. Am J Trop Med Hyg. 2013;89:3017. DOIPubMedGoogle Scholar
  4. Xu  G, Walker  DH, Jupiter  D, Melby  PC, Arcari  CM. A review of the global epidemiology of scrub typhus. PLoS Negl Trop Dis. 2017;11:e0006062. DOIPubMedGoogle Scholar
  5. Bonell  A, Lubell  Y, Newton  PN, Crump  JA, Paris  DH. Estimating the burden of scrub typhus: A systematic review. PLoS Negl Trop Dis. 2017;11:e0005838. DOIPubMedGoogle Scholar
  6. Weitzel  T, Aylwin  M, Martínez-Valdebenito  C, Jiang  J, Munita  JM, Thompson  L, et al. Imported scrub typhus: first case in South America and review of the literature. Trop Dis Travel Med Vaccines. 2018;4:10. DOIPubMedGoogle Scholar
  7. Izzard  L, Fuller  A, Blacksell  SD, Paris  DH, Richards  AL, Aukkanit  N, et al. Isolation of a novel Orientia species (O. chuto sp. nov.) from a patient infected in Dubai. J Clin Microbiol. 2010;48:44049. DOIPubMedGoogle Scholar
  8. Balcells  ME, Rabagliati  R, García  P, Poggi  H, Oddó  D, Concha  M, et al. Endemic scrub typhus-like illness, Chile. Emerg Infect Dis. 2011;17:165963. DOIPubMedGoogle Scholar
  9. Weitzel  T, Dittrich  S, López  J, Phuklia  W, Martinez-Valdebenito  C, Velásquez  K, et al. Endemic scrub typhus in South America. N Engl J Med. 2016;375:95461. DOIPubMedGoogle Scholar
  10. Maina  AN, Farris  CM, Odhiambo  A, Jiang  J, Laktabai  J, Armstrong  J, et al. Q fever, scrub typhus, and rickettsial diseases in children, 2011–2012 Kenya. Emerg Infect Dis. 2016;22:8836. DOIPubMedGoogle Scholar
  11. Horton  KC, Jiang  J, Maina  A, Dueger  E, Zayed  A, Ahmed  AA, et al. Evidence of Rickettsia and Orientia infections among abattoir workers in Djibouti. Am J Trop Med Hyg. 2016;95:4625. DOIPubMedGoogle Scholar
  12. Kocher  C, Jiang  J, Morrison  AC, Castillo  R, Leguia  M, Loyola  S, et al. Scrub typhus in the Peruvian Amazon. Emerg Infect Dis. 2017;23:138991. DOIPubMedGoogle Scholar
  13. Luce-Fedrow  A, Lehman  ML, Kelly  DJ, Mullins  K, Maina  AN, Stewart  RL, et al. A review of scrub typhus (Orientia tsutsugamushi and related organisms): then, now, and tomorrow. Trop Med Infect Dis. 2018;3:pii E8. PubMedGoogle Scholar
  14. Abarca  K, Weitzel  T, Martínez-Valdebenito  C, Acosta-Jamett  G. [Scrub typhus, an emerging infectious disease in Chile]. Rev Chilena Infectol. 2018;35:6969. DOIPubMedGoogle Scholar
  15. Weitzel  T, Martínez-Valdebenito  C, Acosta-Jamett  G, Jiang  J, Richards  AL, Abarca  K. Scrub typhus in continental Chile, 2016–2018. Emerg Infect Dis. 2019;25:12147. DOIPubMedGoogle Scholar
  16. Jiang  J, Martínez-Valdebenito  C, Weitzel  T, Abarca  K, Richards  AL. Development of an Orientia genus-specific quantitative real-time PCR assay and the detection of Orientia species in DNA preparations from O. tsutsugamushi, Candidatus Orientia chuto, and Orientia species from Chile. In: Abstracts of the 29th Meeting of the American Society for Rickettsiology; Milwaukee, WI, USA; 2018 Jun 16–19. Abstract no. 46.
  17. Hall  TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:958.
  18. Kumar  S, Stecher  G, Li  M, Knyaz  C, Tamura  K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:15479. DOIPubMedGoogle Scholar
  19. Tindall  BJ, Rosselló-Móra  R, Busse  HJ, Ludwig  W, Kämpfer  P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:24966. DOIPubMedGoogle Scholar
  20. Weitzel  T, Acosta-Jamett  G, Martínez-Valdebenito  C, Richards  AL, Grobusch  MP, Abarca  K. Scrub typhus risk in travelers to southern Chile. Travel Med Infect Dis. 2019;29:789. DOIPubMedGoogle Scholar
  21. Kimura  M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:11120. DOIPubMedGoogle Scholar
  22. Hasegawa  M, Kishino  H, Yano  T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:16074. DOIPubMedGoogle Scholar
  23. Merhej  V, Angelakis  E, Socolovschi  C, Raoult  D. Genotyping, evolution and epidemiological findings of Rickettsia species. Infect Genet Evol. 2014;25:12237. DOIPubMedGoogle Scholar
  24. Richards  AL. Worldwide detection and identification of new and old rickettsiae and rickettsial diseases. FEMS Immunol Med Microbiol. 2012;64:10710. DOIPubMedGoogle Scholar
  25. Walker  DH. Scrub typhus—scientific neglect, ever-widening impact. N Engl J Med. 2016;375:9135. DOIPubMedGoogle Scholar
  26. Jiang  J, Richards  AL. Scrub typhus: no longer restricted to the tsutsugamushi triangle. Trop Med Infect Dis. 2018;3:pii E11.
  27. Elliott  I, Pearson  I, Dahal  P, Thomas  NV, Roberts  T, Newton  PN. Scrub typhus ecology: a systematic review of Orientia in vectors and hosts. Parasit Vectors. 2019;12:513. DOIPubMedGoogle Scholar
  28. Acosta-Jamett  G, Martínez-Valdebenito  C, Beltrami  E, Silva-de La Fuente  MC, Jiang  J, Richards  AL, et al. Identification of trombiculid mites (Acari: Trombiculidae) on rodents from Chiloé Island and molecular evidence of infection with Orientia species. PLoS Negl Trop Dis. 2020;14:e0007619. DOIPubMedGoogle Scholar
  29. Martínez-Valdebenito C, Silva-de la Fuente MC, Acosta-Jamett G, Weitzel T, Jiang J, Richards AL, Abarca K. Molecular detection of Orientia spp. in trombiculid mites collected from rodents on Chiloé Island, Chile. In: Conference Book of the 2nd Asia Pacific Rickettsia Conference; Chiang Rai, Thailand; 2019 Nov 3–6. Abstract no. 33. p. 66.
  30. Abarca  K, Kuijpers  S, Velásquez  K, Martínez-Valdebenito  C, Acosta-Jamett  G, Weitzel  T. Demographic, clinical, and laboratory features of South American scrub typhus in southern Chile, 2015–2019. In: Conference Book of the 2nd Asia Pacific Rickettsia Conference; Chiang Rai, Thailand; 2019 Nov 3–6. Abstract no. 26. p. 33.
  31. Fournier  PE, Raoult  D. Current knowledge on phylogeny and taxonomy of Rickettsia spp. Ann N Y Acad Sci. 2009;1166:111. DOIPubMedGoogle Scholar
  32. Parks  DH, Chuvochina  M, Waite  DW, Rinke  C, Skarshewski  A, Chaumeil  PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:9961004. DOIPubMedGoogle Scholar
  33. Stackebrandt  E, Ebers  J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today. 2006;33:1525.
  34. Kim  M, Oh  HS, Park  SC, Chun  J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:34651. DOIPubMedGoogle Scholar
  35. Qin  QL, Xie  BB, Zhang  XY, Chen  XL, Zhou  BC, Zhou  J, et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol. 2014;196:22105. DOIPubMedGoogle Scholar
  36. Walker  DH. Rickettsiae and rickettsial infections: the current state of knowledge. Clin Infect Dis. 2007;45(Suppl 1):S3944. DOIPubMedGoogle Scholar
  37. Raoult  D, Fournier  PE, Eremeeva  M, Graves  S, Kelly  PJ, Oteo  JA, et al. Naming of Rickettsiae and rickettsial diseases. Ann N Y Acad Sci. 2005;1063:112. DOIPubMedGoogle Scholar
  38. Jiang  J, Paris  DH, Blacksell  SD, Aukkanit  N, Newton  PN, Phetsouvanh  R, et al. Diversity of the 47-kD HtrA nucleic acid and translated amino acid sequences from 17 recent human isolates of Orientia. Vector Borne Zoonotic Dis. 2013;13:36775. DOIPubMedGoogle Scholar
  39. Fleshman  A, Mullins  K, Sahl  J, Hepp  C, Nieto  N, Wiggins  K, et al. Comparative pan-genomic analyses of Orientia tsutsugamushi reveal an exceptional model of bacterial evolution driving genomic diversity. 2018;4:e000199.
  40. Jiang  J, Chan  TC, Temenak  JJ, Dasch  GA, Ching  WM, Richards  AL. Development of a quantitative real-time polymerase chain reaction assay specific for Orientia tsutsugamushi. Am J Trop Med Hyg. 2004;70:3516. DOIPubMedGoogle Scholar
  41. Weitzel  T, Acosta-Jametta , G, Jiang  J, Martínez-Valdebenito  C, Farris  C, Richards  AL, et al. Human seroepidemiology of Rickettsia and Orientia species in Chile—a cross-sectional study in 5 regions. Ticks Tick Borne Dis. 2020;11:101503.

Main Article

1These authors contributed equally to this article.

Page created: May 26, 2020
Page updated: August 18, 2020
Page reviewed: August 18, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external