Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 27, Number 1—January 2021
Dispatch

Increase in Kelch 13 Polymorphisms in Plasmodium falciparum, Southern Rwanda

Clara Bergmann, Welmoed van LoonComments to Author , Felix Habarugira, Costanza Tacoli, Julia C. Jäger, Darius Savelsberg, Fabian Nshimiyimana, Elias Rwamugema, Djibril Mbarushimana, Jules Ndoli, Augustin Sendegeya, Claude Bayingana, and Frank P. Mockenhaupt
Author affiliations: Charité–Universitätsmedizin Berlin, Berlin, Germany (C. Bergmann, W. van Loon, C. Tacoli, J.C. Jäger, D. Savelsberg, F.P. Mockenhaupt); University Teaching Hospital of Butare, Butare, Rwanda (F. Habarugira, E. Rwamugema, D. Mbarushimana, J. Ndoli, A. Sendegeya); Kabutare District Hospital, Butare (F. Nshimiyimana); University of Rwanda, Kigali, Rwanda (C. Bayingana)

Main Article

Table

Nonsynonymous single nucleotide polymorphisms in the Kelch 13 propeller domain of clinical Plasmodium falciparum isolates collected in the Huye District, Rwanda, 2010–2019*

Year No. sequenced isolates No. (%) isolates with nonsynonymous mutations Amino acid changes and nucleotide changes
2010 75 0 Not applicable
2014 81 2 (2.5) V555A, A626S
2015 66 3 (4.5) P574L,† D648H, A675V†
2019 66 8 (12.1) C469F,† G533A, V555A, R561H‡ (3×), A578S, A675V†

*Data during 2010–2015 derived from Tacoli et al. (7). 
†Candidate mutations for artemisinin resistance. 
‡Validated mutation for artemisinin resistance (4).

Main Article

References
  1. Ménard  D, Khim  N, Beghain  J, Adegnika  AA, Shafiul-Alam  M, Amodu  O, et al.; KARMA Consortium. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016;374:245364. DOIPubMedGoogle Scholar
  2. Hanboonkunupakarn  B, White  NJ. The threat of antimalarial drug resistance. Trop Dis Travel Med Vaccines. 2015;2:10.
  3. Ariey  F, Witkowski  B, Amaratunga  C, Beghain  J, Langlois  AC, Khim  N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:505. DOIPubMedGoogle Scholar
  4. World Health Organisation Global Malaria Programme. Status report on artemisinin resistance and artemisinin-based combination therapy efficacy. Geneva: The Organisation; 2018 Aug [cited 10 May 2020]. https://apps.who.int/iris/bitstream/handle/10665/274362/WHO-CDS-GMP-2018.18-eng.pdf
  5. Amato  R, Miotto  O, Woodrow  CJ, Almagro-Garcia  J, Sinha  I, Campino  S, et al. Genomic epidemiology of artemisinin resistant malaria. Elife. 2016;5:e08714.
  6. Uwimana  A, Penkunas  MJ, Nisingizwe  MP, Uyizeye  D, Hakizimana  D, Musanabaganwa  C, et al. Expanding home-based management of malaria to all age groups in Rwanda: analysis of acceptability and facility-level time-series data. Trans R Soc Trop Med Hyg. 2018;112:51321. DOIPubMedGoogle Scholar
  7. Tacoli  C, Gai  PP, Bayingana  C, Sifft  K, Geus  D, Ndoli  J, et al. Artemisinin resistance-associated K13 polymorphisms of Plasmodium falciparum in southern Rwanda, 2010–2015. Am J Trop Med Hyg. 2016;95:10903. DOIPubMedGoogle Scholar
  8. Gahutu  JB, Steininger  C, Shyirambere  C, Zeile  I, Cwinya-Ay  N, Danquah  I, et al. Prevalence and risk factors of malaria among children in southern highland Rwanda. Malar J. 2011;10:134. DOIPubMedGoogle Scholar
  9. Uwimana  A, Legrand  E, Stokes  BH, Ndikumana  JM, Warsame  M, Umulisa  N, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26:16028. DOIPubMedGoogle Scholar
  10. Ocan  M, Akena  D, Nsobya  S, Kamya  MR, Senono  R, Kinengyere  AA, et al. K13-propeller gene polymorphisms in Plasmodium falciparum parasite population in malaria affected countries: a systematic review of prevalence and risk factors. Malar J. 2019;18:60.
  11. Ashley  EA, Dhorda  M, Fairhurst  RM, Amaratunga  C, Lim  P, Suon  S, et al.; Tracking Resistance to Artemisinin Collaboration (TRAC). Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:41123. DOIPubMedGoogle Scholar
  12. Ataide  R, Ashley  EA, Powell  R, Chan  JA, Malloy  MJ, O’Flaherty  K, et al. Host immunity to Plasmodium falciparum and the assessment of emerging artemisinin resistance in a multinational cohort. Proc Natl Acad Sci U S A. 2017;114:351520. DOIPubMedGoogle Scholar
  13. Conrad  MD, Nsobya  SL, Rosenthal  PJ. The diversity of the Plasmodium falciparum K13 propeller domain did not increase after implementation of artemisinin-based combination therapy in Uganda. Antimicrob Agents Chemother. 2019;63:e01234-19. DOIPubMedGoogle Scholar
  14. Ikeda  M, Kaneko  M, Tachibana  SI, Balikagala  B, Sakurai-Yatsushiro  M, Yatsushiro  S, et al. Artemisinin-resistant Plasmodium falciparum with high survival rates, Uganda, 2014–2016. Emerg Infect Dis. 2018;24:71826. DOIPubMedGoogle Scholar

Main Article

Page created: November 04, 2020
Page updated: December 21, 2020
Page reviewed: December 21, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external