Volume 27, Number 8—August 2021
Dispatch
Endogenous Endophthalmitis Caused by ST66-K2 Hypervirulent Klebsiella pneumoniae, United States
Figure
![Figure. Comparative genetic analysis of sequence type 66-K2 hypervirulent Klebsiella pneumoniae isolate (UCLA353) from a 30-year-old man in California, USA, who had endogenous endophthalmitis and 4 other isolates: AJ210 (Australia, 2002 [6]), 18-0005 (Germany, 2017 [7]), SB5881 (France, 2018 [8]), and Kp52.145 (Indonesia, 1935 [[11]). Maximum-likelihood tree based on single-nucleotide polymorphisms and not drawn to scale. Colors indicate different loci; shades indicate different alleles. Colored columns show the capsular sequence type of the wzi gene, which codes for the outer membrane protein WZI; YbST; the chromosomal virulence loci yybt and clb; the plasmid II–associated virulence loci iuc, iro, and rmpA; and the plasmid I–associated virulence locus rmpA2. AJ210, 18-0005, SB5881 and UCLA353 share the wzi 257 allele (dark purple). AJ210, SB5881 and UCLA353 share the YbST 315 allele, whereas 18-0005 has the YbST 316 allele (dark green). The wzi and YbST alleles for strain Kp52.145 are shown in lighter colors. clb, colibactin; iro, salmochelin; iuc, aerobactin; rmpA, regulator of mucoid phenotype; YbST, yersiniabactin sequence type; ybt, yersiniabactin. Comparative genetic analysis of sequence type 66-K2 hypervirulent Klebsiella pneumoniae isolate (UCLA353) from a 30-year-old man in California, USA, who had endogenous endophthalmitis and 4 other isolates: AJ210 (Australia, 2002 [6]), 18-0005 (Germany, 2017 [7]), SB5881 (France, 2018 [8]), and Kp52.145 (Indonesia, 1935 [[11]). Maximum-likelihood tree based on single-nucleotide polymorphisms and not drawn to scale. Colors indicate different loci; shades indicate different alleles. Colored columns show the capsular sequence type of the wzi gene, which codes for the outer membrane protein WZI; YbST; the chromosomal virulence loci yybt and clb; the plasmid II–associated virulence loci iuc, iro, and rmpA; and the plasmid I–associated virulence locus rmpA2. AJ210, 18-0005, SB5881 and UCLA353 share the wzi 257 allele (dark purple). AJ210, SB5881 and UCLA353 share the YbST 315 allele, whereas 18-0005 has the YbST 316 allele (dark green). The wzi and YbST alleles for strain Kp52.145 are shown in lighter colors. clb, colibactin; iro, salmochelin; iuc, aerobactin; rmpA, regulator of mucoid phenotype; YbST, yersiniabactin sequence type; ybt, yersiniabactin.](/eid/images/21-0234-F1.jpg)
Figure. Comparative genetic analysis of sequence type 66-K2 hypervirulent Klebsiella pneumoniae isolate (UCLA353) from a 30-year-old man in California, USA, who had endogenous endophthalmitis and 4 other isolates: AJ210 (Australia, 2002 [6]), 18-0005 (Germany, 2017 [7]), SB5881 (France, 2018 [8]), and Kp52.145 (Indonesia, 1935 [[11]). Maximum-likelihood tree based on single-nucleotide polymorphisms and not drawn to scale. Colors indicate different loci; shades indicate different alleles. Colored columns show the capsular sequence type of the wzi gene, which codes for the outer membrane protein WZI; YbST; the chromosomal virulence loci yybt and clb; the plasmid II–associated virulence loci iuc, iro, and rmpA; and the plasmid I–associated virulence locus rmpA2. AJ210, 18-0005, SB5881 and UCLA353 share the wzi 257 allele (dark purple). AJ210, SB5881 and UCLA353 share the YbST 315 allele, whereas 18-0005 has the YbST 316 allele (dark green). The wzi and YbST alleles for strain Kp52.145 are shown in lighter colors. clb, colibactin; iro, salmochelin; iuc, aerobactin; rmpA, regulator of mucoid phenotype; YbST, yersiniabactin sequence type; ybt, yersiniabactin.
References
- Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae—clinical and molecular perspectives. J Intern Med. 2020;287:283–300. DOIPubMedGoogle Scholar
- Hussain I, Ishrat S, Ho DCW, Khan SR, Veeraraghavan MA, Palraj BR, et al. Endogenous endophthalmitis in Klebsiella pneumoniae pyogenic liver abscess: systematic review and meta-analysis. Int J Infect Dis. 2020;101:259–68. DOIPubMedGoogle Scholar
- Xu M, Li A, Kong H, Zhang W, Chen H, Fu Y, et al. Endogenous endophthalmitis caused by a multidrug-resistant hypervirulent Klebsiella pneumoniae strain belonging to a novel single locus variant of ST23: first case report in China. BMC Infect Dis. 2018;18:669. DOIPubMedGoogle Scholar
- Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard AS, et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis. 2014;20:1812–20. DOIPubMedGoogle Scholar
- Struve C, Roe CC, Stegger M, Stahlhut SG, Hansen DS, Engelthaler DM, et al. Mapping the evolution of hypervirulent Klebsiella pneumoniae. MBio. 2015;6:
e00630 . DOIPubMedGoogle Scholar - Baekby M, Hegedüs N, Sandahl TD, Krogfelt KA, Struve C. Hypervirulent Klebsiella pneumoniae K1 liver abscess and endogenous endophthalmitis in a Caucasian man. Clin Case Rep. 2018;6:1618–23. DOIPubMedGoogle Scholar
- Kashani AH, Eliott D. The emergence of Klebsiella pneumoniae endogenous endophthalmitis in the USA: basic and clinical advances. J Ophthalmic Inflamm Infect. 2013;3:28. DOIPubMedGoogle Scholar