Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 27, Number 8—August 2021
Dispatch

Endogenous Endophthalmitis Caused by ST66-K2 Hypervirulent Klebsiella pneumoniae, United States

Edwin Kamau, Paul R. Allyn, Omer E. Beaird, Kevin W. Ward, Nancy Kwan, Omai B. Garner, and Shangxin YangComments to Author 
Author affiliation: University of California, Los Angeles, California, USA

Main Article

Figure

Comparative genetic analysis of sequence type 66-K2 hypervirulent Klebsiella pneumoniae isolate (UCLA353) from a 30-year-old man in California, USA, who had endogenous endophthalmitis and 4 other isolates: AJ210 (Australia, 2002 [6]), 18-0005 (Germany, 2017 [7]), SB5881 (France, 2018 [8]), and Kp52.145 (Indonesia, 1935 [[11]). Maximum-likelihood tree based on single-nucleotide polymorphisms and not drawn to scale. Colors indicate different loci; shades indicate different alleles. Colored columns show the capsular sequence type of the wzi gene, which codes for the outer membrane protein WZI; YbST; the chromosomal virulence loci yybt and clb; the plasmid II–associated virulence loci iuc, iro, and rmpA; and the plasmid I–associated virulence locus rmpA2. AJ210, 18-0005, SB5881 and UCLA353 share the wzi 257 allele (dark purple). AJ210, SB5881 and UCLA353 share the YbST 315 allele, whereas 18-0005 has the YbST 316 allele (dark green). The wzi and YbST alleles for strain Kp52.145 are shown in lighter colors. clb, colibactin; iro, salmochelin; iuc, aerobactin; rmpA, regulator of mucoid phenotype; YbST, yersiniabactin sequence type; ybt, yersiniabactin.

Figure. Comparative genetic analysis of sequence type 66-K2 hypervirulent Klebsiella pneumoniae isolate (UCLA353) from a 30-year-old man in California, USA, who had endogenous endophthalmitis and 4 other isolates: AJ210 (Australia, 2002 [6]), 18-0005 (Germany, 2017 [7]), SB5881 (France, 2018 [8]), and Kp52.145 (Indonesia, 1935 [[11]). Maximum-likelihood tree based on single-nucleotide polymorphisms and not drawn to scale. Colors indicate different loci; shades indicate different alleles. Colored columns show the capsular sequence type of the wzi gene, which codes for the outer membrane protein WZI; YbST; the chromosomal virulence loci yybt and clb; the plasmid II–associated virulence loci iuc, iro, and rmpA; and the plasmid I–associated virulence locus rmpA2. AJ210, 18-0005, SB5881 and UCLA353 share the wzi 257 allele (dark purple). AJ210, SB5881 and UCLA353 share the YbST 315 allele, whereas 18-0005 has the YbST 316 allele (dark green). The wzi and YbST alleles for strain Kp52.145 are shown in lighter colors. clb, colibactin; iro, salmochelin; iuc, aerobactin; rmpA, regulator of mucoid phenotype; YbST, yersiniabactin sequence type; ybt, yersiniabactin.

Main Article

References
  1. Choby  JE, Howard-Anderson  J, Weiss  DS. Hypervirulent Klebsiella pneumoniae—clinical and molecular perspectives. J Intern Med. 2020;287:283300. DOIPubMedGoogle Scholar
  2. Hussain  I, Ishrat  S, Ho  DCW, Khan  SR, Veeraraghavan  MA, Palraj  BR, et al. Endogenous endophthalmitis in Klebsiella pneumoniae pyogenic liver abscess: systematic review and meta-analysis. Int J Infect Dis. 2020;101:25968. DOIPubMedGoogle Scholar
  3. Xu  M, Li  A, Kong  H, Zhang  W, Chen  H, Fu  Y, et al. Endogenous endophthalmitis caused by a multidrug-resistant hypervirulent Klebsiella pneumoniae strain belonging to a novel single locus variant of ST23: first case report in China. BMC Infect Dis. 2018;18:669. DOIPubMedGoogle Scholar
  4. Bialek-Davenet  S, Criscuolo  A, Ailloud  F, Passet  V, Jones  L, Delannoy-Vieillard  AS, et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis. 2014;20:181220. DOIPubMedGoogle Scholar
  5. Struve  C, Roe  CC, Stegger  M, Stahlhut  SG, Hansen  DS, Engelthaler  DM, et al. Mapping the evolution of hypervirulent Klebsiella pneumoniae. MBio. 2015;6:e00630. DOIPubMedGoogle Scholar
  6. Holt  KE, Wertheim  H, Zadoks  RN, Baker  S, Whitehouse  CA, Dance  D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A. 2015;112:E357481. DOIPubMedGoogle Scholar
  7. Klaper  K, Wendt  S, Lübbert  C, Lippmann  N, Pfeifer  Y, Werner  G. Hypervirulent Klebsiella pneumoniae of lineage ST66-K2 caused tonsillopharyngitis in a German patient. Microorganisms. 2021;9:133. DOIPubMedGoogle Scholar
  8. Rodrigues  C, d’Humières  C, Papin  G, Passet  V, Ruppé  E, Brisse  S. Community-acquired infection caused by the uncommon hypervirulent Klebsiella pneumoniae ST66-K2 lineage. Microb Genom. 2020;6:mgen000419. DOIPubMedGoogle Scholar
  9. Baekby  M, Hegedüs  N, Sandahl  TD, Krogfelt  KA, Struve  C. Hypervirulent Klebsiella pneumoniae K1 liver abscess and endogenous endophthalmitis in a Caucasian man. Clin Case Rep. 2018;6:161823. DOIPubMedGoogle Scholar
  10. Kashani  AH, Eliott  D. The emergence of Klebsiella pneumoniae endogenous endophthalmitis in the USA: basic and clinical advances. J Ophthalmic Inflamm Infect. 2013;3:28. DOIPubMedGoogle Scholar
  11. Lery  LM, Frangeul  L, Tomas  A, Passet  V, Almeida  AS, Bialek-Davenet  S, et al. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol. 2014;12:41. DOIPubMedGoogle Scholar

Main Article

Page created: June 09, 2021
Page updated: July 18, 2021
Page reviewed: July 18, 2021
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external