Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 28, Number 9—September 2022
Dispatch

International Spread of Multidrug-Resistant Rhodococcus equi

Jorge Val-Calvo, Jane Darcy, James Gibbons, Alan Creighton, Claire Egan, Thomas Buckley, Achim Schmalenberger, Ursula Fogarty, Mariela Scortti, and José A. Vázquez-BolandComments to Author 
Author affiliations: University of Edinburgh, Edinburgh, Scotland, UK (J. Val-Calvo, M. Scortti, J.A. Vazquez-Boland); University of Limerick, Limerick, Ireland (J. Darcy, A. Schmalenberger); Irish Equine Centre, Naas, Ireland (J. Gibbons, A. Creighton, C. Egan, T. Buckley, U. Fogarty)

Main Article

Figure 1

Whole-genome phylogenetic analysis of Rhodococcus equi and its multidrug-resistant 2287 clone. Asterisk indicates strain 103S used as reference genome (GenBank accession no. FN563149). For analysis we used 92 R. equi genome sequences including 68 macrolide-resistant and -susceptible equine isolates from the United States and 22 global strains from a previously reported R. equi diversity set (14) (italics). Macrolide-resistant isolates include 36 members of the MDR-RE 2287 clonal complex (red text) as well as isolates representing spillages of the pRErm46 plasmid to other R. equi genotypes (8,10). Arrows indicate the 2 MDR-RE 2287 isolates from Ireland. Labels indicate geographic origin, year of isolation, and resistance phenotype when applicable (MRR, macrolide and rifampin resistance; MR, macrolide resistance; RR, rifampin resistance). Symbols indicate pRErm46 carriage in macrolide-resistant isolates, described in the key; open circles indicate MDR-RE isolates where pRErm46 has been lost after transposition of the TnRErm46 element to the host genome (8). Numbers at nodes indicate bootstrap values for 1,000 replicates. Tree was drawn with FigTree (http://tree.bio.ed.ac.uk/software/figtree).

Figure 1. Whole-genome phylogenetic analysis of Rhodococcus equi and its multidrug-resistant 2287 clone. Asterisk indicates strain 103S used as reference genome (GenBank accession no. FN563149). For analysis we used 92 R. equi genome sequences including 68 macrolide-resistant and -susceptible equine isolates from the United States and 22 global strains from a previously reported R. equi diversity set (14) (italics). Macrolide-resistant isolates include 36 members of the MDR-RE 2287 clonal complex (red text) as well as isolates representing spillages of the pRErm46 plasmid to other R. equi genotypes (8,10). Arrows indicate the 2 MDR-RE 2287 isolates from Ireland. Labels indicate geographic origin, year of isolation, and resistance phenotype when applicable (MRR, macrolide and rifampin resistance; MR, macrolide resistance; RR, rifampin resistance). Symbols indicate pRErm46 carriage in macrolide-resistant isolates, described in the key; open circles indicate MDR-RE isolates where pRErm46 has been lost after transposition of the TnRErm46 element to the host genome (8). Numbers at nodes indicate bootstrap values for 1,000 replicates. Tree was drawn with FigTree (http://tree.bio.ed.ac.uk/software/figtree).

Main Article

References
  1. Prescott  JF. Rhodococcus equi: an animal and human pathogen. Clin Microbiol Rev. 1991;4:2034. DOIPubMedGoogle Scholar
  2. Yamshchikov  AV, Schuetz  A, Lyon  GM. Rhodococcus equi infection. Lancet Infect Dis. 2010;10:3509. DOIPubMedGoogle Scholar
  3. Vázquez-Boland  JA, Meijer  WG. The pathogenic actinobacterium Rhodococcus equi: what’s in a name? Mol Microbiol. 2019;112:115. DOIPubMedGoogle Scholar
  4. Muscatello  G, Leadon  DP, Klayt  M, Ocampo-Sosa  A, Lewis  DA, Fogarty  U, et al. Rhodococcus equi infection in foals: the science of ‘rattles’. Equine Vet J. 2007;39:4708. DOIPubMedGoogle Scholar
  5. Giguère  S. Treatment of infections caused by Rhodococcus equi. Vet Clin North Am Equine Pract. 2017;33:6785. DOIPubMedGoogle Scholar
  6. Burton  AJ, Giguère  S, Sturgill  TL, Berghaus  LJ, Slovis  NM, Whitman  JL, et al. Macrolide- and rifampin-resistant Rhodococcus equi on a horse breeding farm, Kentucky, USA. Emerg Infect Dis. 2013;19:2825. DOIPubMedGoogle Scholar
  7. Anastasi  E, Giguère  S, Berghaus  LJ, Hondalus  MK, Willingham-Lane  JM, MacArthur  I, et al. Novel transferable erm(46) determinant responsible for emerging macrolide resistance in Rhodococcus equi. J Antimicrob Chemother. 2015;70:318490.PubMedGoogle Scholar
  8. Álvarez-Narváez  S, Giguère  S, Anastasi  E, Hearn  J, Scortti  M, Vázquez-Boland  JA. Clonal confinement of a highly mobile resistance element driven by combination therapy in Rhodococcus equi. MBio. 2019;10:e0226019. DOIPubMedGoogle Scholar
  9. Erol  E, Scortti  M, Fortner  J, Patel  M, Vázquez-Boland  JA. Antimicrobial resistance spectrum conferred by pRErm46 of emerging macrolide (multidrug)-resistant Rhodococcus equi. J Clin Microbiol. 2021;59:e0114921. DOIPubMedGoogle Scholar
  10. Álvarez-Narváez  S, Giguère  S, Cohen  N, Slovis  N, Vázquez-Boland  JA. Spread of multidrug-resistant Rhodococcus equi, United States. Emerg Infect Dis. 2021;27:52937. DOIPubMedGoogle Scholar
  11. Bolger  AM, Lohse  M, Usadel  B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:211420. DOIPubMedGoogle Scholar
  12. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  13. Treangen  TJ, Ondov  BD, Koren  S, Phillippy  AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15:524. DOIPubMedGoogle Scholar
  14. Anastasi  E, MacArthur  I, Scortti  M, Alvarez  S, Giguère  S, Vázquez-Boland  JA. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 2016;8:31408. DOIPubMedGoogle Scholar
  15. Baker  S, Thomson  N, Weill  FX, Holt  KE. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science. 2018;360:7338. DOIPubMedGoogle Scholar

Main Article

Page created: July 31, 2022
Page updated: August 19, 2022
Page reviewed: August 19, 2022
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external