Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 29, Number 12—December 2023
Research

Tecovirimat Resistance in Mpox Patients, United States, 2022–2023

Todd G. SmithComments to Author , Crystal M. Gigante, Nhien T. Wynn, Audrey Matheny, Whitni Davidson, Yong Yang, Rene Edgar Condori, Kyle O’Connell, Lynsey Kovar, Tracie L. Williams, Yon C. Yu, Brett W. Petersen, Nicolle Baird, David Lowe, Yu Li, Panayampalli S. Satheshkumar, and Christina L. Hutson
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA (T.G. Smith, C.M. Gigante, N.T. Wynn, A. Matheny, W. Davidson, Y. Yang, R.E. Condori, K. O’Connell, L. Kovar, T.L. Williams, Y.C. Yu, B.W. Petersen, N. Baird, D. Lowe, Y. Li, P.S. Satheshkumar, C.L. Hutson); Deloitte Consulting LLC, Arlington, Virginia, USA (K. O’Connell); Leidos Inc., Reston, Virginia, USA (L. Kovar)

Main Article

Table 2

MPXV F13 mutations identified from 76 patients with mpox, United States, 2023*

Amino acid substitution Isolates Patients EC50, µmol/L Fold change†
A288P (25,26) 6 4 0.5 to >500 29 to >29,000
A288P, A290V, D294V (26) 3 1 0.66 to >500 38 to >29,000
A288P, A290V, L297ins (26) 1 1 >500 >29,000
A288P, A290V, I372N 1 1 15 880
A288P, D294V, A295E 1 1 1.4 83
A288P, D294V, D301del (26) 1 1 >500 >29,000
A288P, I372N 1 1 >150 >8,600
A290V (25,26) 9 9 0.17–43 10–2,500
A290V, I372N (25) 5 5 30–32 1,700–1,800
A295E 3 3 2.0–3.3 110–190
D100N 2 2 0.008 −2
D217N 11 11 0.007–0.012 −2.4 to −1.3
D248N 1 1 0.007 −2.4
D256N 3 3 0.009 −1.8
D283G 2 1 7.1–7.3 404–420
D294V (25) 8 7 0.23–1.4 13–78
D294V, A295E 1 1 1 59
H238Q (25) 4 4 0.54–0.6 28–34
H238Q, A288P, D294V, I372N (25) 1 1 ≈5.2 ≈290
H238Q, N267D, A295E 1 1 24 1,400
I372N (25) 12 9 0.04–>150 2.3 to >8600
K174N, N267D 1 1 12 720
N267D (25) 3 3 10–11 570–630
N267D, A288P (25,26) 4 3 1.2–16 71–900
N267D, A290V 1 1 2.0 110
N267D, D294V 1 1 12 680
N267D, A288P, A290V, D294V (26) 1 1 >500 >29,000
N267D, A288P, A290V, A295E, L297ins (26) 1 1 >500 >29,000
N267D, A288P, A290V, A295E, I372N 1 1 >500 >29,000
N267del (27) 8 7 1.5–4.0 85–230
N267del, N267D 1 1 Not tested
N267del, N267D, A295E 2 2 2.9–18 160–1,000
N267del, N267D, A288P, A295E 1 1 Not tested
N267del, N267D, D294V, A295E 1 1 2.5 140
N267del, A288P, A295E 1 1 >500 >29,000
N267del, T289A, A295E 1 1 0.26 15
N267del, A290V 1 1 0.13 7.5
N267del, A290V, I372N 1 1 3.1 180
P243S, A288P, A290V (26) 1 1 0.56 32
S215F, T289A, A290V, I372N 1 1 Not tested
S369L 3 3 0.006 −2.9
T245I, A290V 1 1 0.17 10
T289A 3 3 0.078–0.14 3.7–7.8
T289A, I372N 1 1 Not tested
T289A, R291K 1 1 1.7 98
Y258C 1 1 18 1,000
Y285H, I372N 1 1 0.045 2.6

*All specimens belong to MPXV clade IIb lineage B.1 and contain E353K substitution in addition to the listed substitutions. All substitutions detected from a specimen are listed regardless of their proportion in the viral population. Insertions (ins) and deletions (del) were detected in addition to substitutions. EC50, 50% effective concentration; MPXV, monkeypox virus. †Fold change was calculated based on the EC50 of the reference strain MPXV clade IIa (U.S., 2003), which was 0.0175 µmol/L.

Main Article

References
  1. Minhaj  FS, Ogale  YP, Whitehill  F, Schultz  J, Foote  M, Davidson  W, et al.; Monkeypox Response Team 2022. Monkeypox Response Team 2022. Monkeypox outbreak—nine states, May 2022. MMWR Morb Mortal Wkly Rep. 2022;71:7649. DOIPubMedGoogle Scholar
  2. Centers for Disease Control and Prevention. 2022 mpox outbreak global map. 2023 [cited 2023 Aug 16]. https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html
  3. Merchlinsky  M, Albright  A, Olson  V, Schiltz  H, Merkeley  T, Hughes  C, et al. The development and approval of tecoviromat (TPOXX®), the first antiviral against smallpox. Antiviral Res. 2019;168:16874. DOIPubMedGoogle Scholar
  4. Yang  G, Pevear  DC, Davies  MH, Collett  MS, Bailey  T, Rippen  S, et al. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus Challenge. J Virol. 2005;79:1313949. DOIPubMedGoogle Scholar
  5. Smith  SK, Olson  VA, Karem  KL, Jordan  R, Hruby  DE, Damon  IK. In vitro efficacy of ST246 against smallpox and monkeypox. Antimicrob Agents Chemother. 2009;53:100712. DOIPubMedGoogle Scholar
  6. Duraffour  S, Snoeck  R, de Vos  R, van Den Oord  JJ, Crance  JM, Garin  D, et al. Activity of the anti-orthopoxvirus compound ST-246 against vaccinia, cowpox and camelpox viruses in cell monolayers and organotypic raft cultures. Antivir Ther. 2007;12:120516. DOIPubMedGoogle Scholar
  7. Berhanu  A, King  DS, Mosier  S, Jordan  R, Jones  KF, Hruby  DE, et al. ST-246 inhibits in vivo poxvirus dissemination, virus shedding, and systemic disease manifestation. Antimicrob Agents Chemother. 2009;53:49995009. DOIPubMedGoogle Scholar
  8. Grosenbach  DW, Berhanu  A, King  DS, Mosier  S, Jones  KF, Jordan  RA, et al. Efficacy of ST-246 versus lethal poxvirus challenge in immunodeficient mice. Proc Natl Acad Sci U S A. 2010;107:83843. DOIPubMedGoogle Scholar
  9. Jordan  R, Goff  A, Frimm  A, Corrado  ML, Hensley  LE, Byrd  CM, et al. ST-246 antiviral efficacy in a nonhuman primate monkeypox model: determination of the minimal effective dose and human dose justification. Antimicrob Agents Chemother. 2009;53:181722. DOIPubMedGoogle Scholar
  10. Zaitseva  M, Shotwell  E, Scott  J, Cruz  S, King  LR, Manischewitz  J, et al. Effects of postchallenge administration of ST-246 on dissemination of IHD-J-Luc vaccinia virus in normal mice and in immune-deficient mice reconstituted with T cells. J Virol. 2013;87:556476. DOIPubMedGoogle Scholar
  11. Smith  SK, Self  J, Weiss  S, Carroll  D, Braden  Z, Regnery  RL, et al. Effective antiviral treatment of systemic orthopoxvirus disease: ST-246 treatment of prairie dogs infected with monkeypox virus. J Virol. 2011;85:917687. DOIPubMedGoogle Scholar
  12. Sbrana  E, Jordan  R, Hruby  DE, Mateo  RI, Xiao  SY, Siirin  M, et al. Efficacy of the antipoxvirus compound ST-246 for treatment of severe orthopoxvirus infection. Am J Trop Med Hyg. 2007;76:76873. DOIPubMedGoogle Scholar
  13. Santos-Fernandes  É, Beltrame  CO, Byrd  CM, Cardwell  KB, Schnellrath  LC, Medaglia  ML, et al. Increased susceptibility of Cantagalo virus to the antiviral effect of ST-246®. Antiviral Res. 2013;97:30111. DOIPubMedGoogle Scholar
  14. Quenelle  DC, Buller  RM, Parker  S, Keith  KA, Hruby  DE, Jordan  R, et al. Efficacy of delayed treatment with ST-246 given orally against systemic orthopoxvirus infections in mice. Antimicrob Agents Chemother. 2007;51:68995. DOIPubMedGoogle Scholar
  15. Nalca  A, Hatkin  JM, Garza  NL, Nichols  DK, Norris  SW, Hruby  DE, et al. Evaluation of orally delivered ST-246 as postexposure prophylactic and antiviral therapeutic in an aerosolized rabbitpox rabbit model. Antiviral Res. 2008;79:1217. DOIPubMedGoogle Scholar
  16. Mucker  EM, Goff  AJ, Shamblin  JD, Grosenbach  DW, Damon  IK, Mehal  JM, et al. Efficacy of tecovirimat (ST-246) in nonhuman primates infected with variola virus (Smallpox). Antimicrob Agents Chemother. 2013;57:624653. DOIPubMedGoogle Scholar
  17. Huggins  J, Goff  A, Hensley  L, Mucker  E, Shamblin  J, Wlazlowski  C, et al. Nonhuman primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug ST-246. Antimicrob Agents Chemother. 2009;53:26205. DOIPubMedGoogle Scholar
  18. Warner  BM, Klassen  L, Sloan  A, Deschambault  Y, Soule  G, Banadyga  L, et al. In vitro and in vivo efficacy of tecovirimat against a recently emerged 2022 monkeypox virus isolate. Sci Transl Med. 2022;14:eade7646. DOIPubMedGoogle Scholar
  19. Duraffour  S, Lorenzo  MM, Zöller  G, Topalis  D, Grosenbach  D, Hruby  DE, et al. ST-246 is a key antiviral to inhibit the viral F13L phospholipase, one of the essential proteins for orthopoxvirus wrapping. J Antimicrob Chemother. 2015;70:136780. DOIPubMedGoogle Scholar
  20. Lederman  ER, Davidson  W, Groff  HL, Smith  SK, Warkentien  T, Li  Y, et al. Progressive vaccinia: case description and laboratory-guided therapy with vaccinia immune globulin, ST-246, and CMX001. J Infect Dis. 2012;206:137285. DOIPubMedGoogle Scholar
  21. Rao  AK, Schrodt  CA, Minhaj  FS, Waltenburg  MA, Cash-Goldwasser  S, Yu  Y, et al. Interim clinical treatment considerations for severe manifestations of mpox—United States, February 2023. MMWR Morb Mortal Wkly Rep. 2023;72:23243. DOIPubMedGoogle Scholar
  22. Gigante  CM, Korber  B, Seabolt  MH, Wilkins  K, Davidson  W, Rao  AK, et al. Multiple lineages of monkeypox virus detected in the United States, 2021-2022. Science. 2022;378:5605. DOIPubMedGoogle Scholar
  23. Bojkova  D, Bechtel  M, Rothenburger  T, Steinhorst  K, Zöller  N, Kippenberger  S, et al. Drug sensitivity of currently circulating mpox viruses. N Engl J Med. 2023;388:27981. DOIPubMedGoogle Scholar
  24. Frenois-Veyrat  G, Gallardo  F, Gorgé  O, Marcheteau  E, Ferraris  O, Baidaliuk  A, et al. Tecovirimat is effective against human monkeypox virus in vitro at nanomolar concentrations. Nat Microbiol. 2022;7:19515. DOIPubMedGoogle Scholar
  25. Garrigues  JM, Hemarajata  P, Karan  A, Shah  NK, Alarcón  J, Marutani  AN, et al. Identification of tecovirimat resistance-associated mutations in human monkeypox virus—Los Angeles County. Antimicrob Agents Chemother. 2023;67:e0056823. DOIPubMedGoogle Scholar
  26. Alarcón  J, Kim  M, Terashita  D, Davar  K, Garrigues  JM, Guccione  JP, et al. An mpox-related death in the United States. N Engl J Med. 2023;388:12467. DOIPubMedGoogle Scholar
  27. Garrigues  JM, Hemarajata  P, Espinosa  A, Hacker  JK, Wynn  NT, Smith  TG, et al. Community spread of a human monkeypox virus variant with a tecovirimat resistance-associated mutation. Antimicrob Agents Chemother. 2023;•••:e0097223. DOIPubMedGoogle Scholar
  28. Food and Drug Administration. FDA mpox response. 2022 [cited 2023 Apr 12]. https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/fda-mpox-response
  29. Mertes  H, Rezende  AM, Brosius  I, Naesens  R, Michiels  J, deBlock  T, et al. Tecovirimat resistance in an immunocompromised patient with mpox and prolonged viral shedding. Ann Intern Med. 2023;176:11413. DOIPubMedGoogle Scholar
  30. Dammann  F, Raja  M, Camargo  JF. Progression of human monkeypox infection despite tecovirimat in an immunocompromised adult. Transpl Infect Dis. 2023;25:e14022. DOIPubMedGoogle Scholar
  31. Stafford  A, Rimmer  S, Gilchrist  M, Sun  K, Davies  EP, Waddington  CS, et al. Use of cidofovir in a patient with severe mpox and uncontrolled HIV infection. Lancet Infect Dis. 2023;23:e21826. DOIPubMedGoogle Scholar

Main Article

Page created: October 18, 2023
Page updated: November 18, 2023
Page reviewed: November 18, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external