Volume 3, Number 1—March 1997
Synopsis
Fluoroquinolone Resistance in Neisseria gonorrhoeae
Table
Therapeutic agent,
Dose |
Agent Tested,
Disk Content |
Zone Inhibition Diametersc
nearest whole mm |
Equivalent MICc (mg/ml) |
Reference |
||||
---|---|---|---|---|---|---|---|---|
(µg) | R | I | S | R | I | S | ||
Ciprofloxacin, 250 mg | Cip, 1 | ≤24 | ≥0.03 | 8 | ||||
Ciprofloxacin, 500 mg | Cip, 5 | ≤29 | 30-35 | ≥36 | ≥1.0 | 0.13-0.5 | ≤0.06 | 18 |
Cip, 5 | ≤22 | ≥1.0 | 6 | |||||
Ofloxacin, 400 mg | Ofx, 5 | ≤24 | 25-30 | ≥31 | ≥2.0 | 0.5-1.0 | ≤0.25 | 18 |
Ofx, 5 | ≤24 | ≥1.0 | 6 | |||||
Enoxacin, 400 mg | Enx, 10 | ≤31 | ≥32 | ≥1.0 | 0.5 | ≤0.25 | 18 | |
Lomefloxacin, 400 mg | Lom, 10 | ≤26 | 27-35 | ≥36 | ≥2.0 | 0.25-1.0 | ≤0.125 | 18 |
Norfloxacin, 800 mg | Nor, 5 | ≤32 | 33-35 | ≥36 | ≥1.0 | 0.5 | ≤0.25 | 18 |
aThese criteria have not been recommended by the National Committee for Clinical Laboratory Standards (NCCLS); they are provided to guide interpretation of susceptibilities until the NCCLS establishes criteria.
bAbbreviations: MIC, minimal inhibitory concentration (µg/ml); R, resistant; I, intermediate resistance; S, susceptible; Cip, ciprofloxacin; Ofx, ofoxacin; Enx, enoxacin; Lom, lomefloxacin; Nor, norfloxacin.
cWith the exception of norfloxacin, criteria for the susceptible categories are those designated by the NCCLS (16,17); criteria for the interpretation of the susceptible category for norfloxacin were proposed by CDC (18).
References
- Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines. MMWR Morb Mortal Wkly Rep. 1989;38:S8.
- Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines. MMWR Morb Mortal Wkly Rep. 1993;42(RR-14):4–5.PubMedGoogle Scholar
- Corkill JE, Percival A, Lind M. Reduced uptake of ciprofloxacin in a resistant strain of Neisseria gonorrhoeae and transformation of resistance to other strains. J Antimicrob Chemother. 1991;28:601–4. DOIPubMedGoogle Scholar
- Tapsall JW, Lovett R, Munro R. Failure of 500 mg ciprofloxacin therapy in male urethral gonorrhea. Med J Aust. 1992;156:143.PubMedGoogle Scholar
- Centers for Disease Control and Prevention. Fluoroquinolone resistance in Neisseria gonorrhoeae—Colorado and Washington, 1995. MMWR Morb Mortal Wkly Rep. 1995;20:761–4.
- Kam KM, Wong PW, Cheung MM, Ho NKY. Detection of fluoroquinolone-resistant Neisseria gonorrhoeae. J Clin Microbiol. 1996;34:1462–4.PubMedGoogle Scholar
- Ringuette L, Trudeau T, Turcotte T, Yeung K, Rémes R, Perron L, Emergence of Neisseria gonorrhoeae strains with decreased susceptibility to ciprofloxacin-Quebec, 1994-1995. Can Commun Dis Rep. 1996;22:121–5.PubMedGoogle Scholar
- Gransden WR, Warren CA, Phillips I, Hodges M, Barlow D. Decreased susceptibility of Neisseria gonorrhoeae to ciprofloxacin. Lancet. 1990;335:51. DOIPubMedGoogle Scholar
- Jephcott AE, Turner A. Ciprofloxacin resistance in gonococci. Lancet. 1990;335:165. DOIPubMedGoogle Scholar
- Birley H, McDonald P, Carey P, Fletcher J. High level ciprofloxacin resistance in Neisseria gonorrhoeae. Genitourin Med. 1994;70:292–3.PubMedGoogle Scholar
- Gransden WR, Warren C, Phillips I. 4-Fluoroquinolone-resistant Neisseria gonorrhoeae in the United Kingdom. J Med Microbiol. 1991;34:23–7. DOIPubMedGoogle Scholar
- Turner A, Gough RR, Jephcott AE, McClean AN. Importation into the UK of a strain of Neisseria gonorrhoeae resistant to penicillin, ciprofloxacin, and tetracycline. Genitourin Med. 1995;71:245–65.
- Kam K-M, Lo K-K, Lai C-F, Lee Y-S, Chan C-B. Ofloxacin susceptibilities of 5,667 Neisseria gonorrhoeae strains isolated in Hong Kong. Antimicrob Agents Chemother. 1993;37:2007–8.PubMedGoogle Scholar
- Kam KM, Lo K-K, Ng K-Y-H, Cheung M-M. Rapid decline in penicillinase-producing Neisseria gonorrhoeae in Hong Kong associated with emerging 4-fluoroquinolone resistance. Genitourin Med. 1995;71:141–4.PubMedGoogle Scholar
- Tapsall JW, Phillips EA, Shultz TR, Thacker C. Quinolone-resistant Neisseria gonorrheoae isolated in Sydney, Australia, 1991 to 1995. Sex Transm Dis. 1996;23:425–8. DOIPubMedGoogle Scholar
- National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 3rd ed., approved standard. Villanova (PA): National Committee for Clinical Laboratory Standards, 1993; NCCLS document no. M7-A3;13(25):1-32.
- National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests, 5th ed., approved standard. Villanova (PA): National Committee for Clinical Laboratory Standards 1993; NCCLS document no. M2-A5;13(24):1-32.
- Knapp JS, Hale JA, Wintersheid K, Neal SW, Whittington WL. Proposed criteria for the interpretation of susceptibilities of strains of Neisseria gonorrhoeae to ciprofloxacin, ofloxacin, enoxacin, lomefloxacin, and norfloxacin. Antimicrob Agents Chemother. 1995;39:2442–5.PubMedGoogle Scholar
- Yeung K-H, Ng L-K, Dillon JR. Evaluation of Etest for testing antimicrobial susceptibilities of Neisseria gonorrhoeae isolates with different growth media. J Clin Microbiol. 1993;31:3053–5.PubMedGoogle Scholar
- Jaffe HW, Schroeter AL, Reynolds GH, Zaidi AA, Martin JE Jr, Thayer JD. Pharmacokinetic determinants of penicillin cure of gonococcal urethritis. Antimicrob Agents Chemother. 1979;15:587–91.PubMedGoogle Scholar
- Turner A, Jephcott AE, Gough KR. Laboratory detection of ciprofloxacin resistant Neisseria gonorrhoeae. J Clin Pathol. 1991;44:169–70. DOIPubMedGoogle Scholar
- Joyce MP, Aying BB, Vaughan GH, Herip DS, Hayes CG, Espinosa G, In vitro sensitivity of Neisseria gonorrhoeae to fluoroquinolone antibiotics in the Republic of the Philippines. Presented at the 6th International Pathogenic Neisseria Conference; Callaway Gardens, GA, Oct 16-21, 1988; Abstract E19.
- Clendennen TE, Echeverria P, Saenguer S, Kees ES, Boslego JW, Wignall FS. Antibiotic susceptibility survey of Neisseria gonorrhoeae in Thailand. Antimicrob Agents Chemother. 1992;36:1682–7.PubMedGoogle Scholar
- Putnam SD, Lavin BS, Stone JR, Oldfield EC III, Hooper DG. Evaluation of the standardized disk diffusion and agar dilution antibiotic susceptibility test methods by using strains of Neisseria gonorrhoeae from the United States and Southeast Asia. J Clin Microbiol. 1992;30:974–80.PubMedGoogle Scholar
- Knapp JS, Ohye R, Neal SW, Parekh MC, Higa H, Rice RJ. Emerging in vitro resistance to quinolones in penicillinase-producing Neisseria gonorrhoeae strains in Hawaii. Antimicrob Agents Chemother. 1994;38:2200–3.PubMedGoogle Scholar
- Knapp JS, Washington JA, Doyle LJ, Neal SW, Parekh MC, Rice RJ. Persistence of Neisseria gonorrhoeae strains with decreased susceptibilities to ciprofloxacin and ofloxacin in Cleveland, Ohio from 1992 through 1993. Antimicrob Agents Chemother. 1994;38:2194–6.PubMedGoogle Scholar
- Tapsall JW, Shultz TR, Phillips AE. Characteristics of Neisseria gonorrhoeae isolated in Australia showing decreased sensitivity to fluoroquinolone antibiotics. Pathology. 1994;24:27–31. DOIGoogle Scholar
- Tanaka M, Matsumoto T, Kobayashi T, Uchino U, Kumazawa J. Emergence of in vitro resistance to fluoroquinolones in Neisseria gonorrhoeae isolated in Japan. Antimicrob Agents Chemother. 1995;39:2367–70.PubMedGoogle Scholar
- Manalastas R, Abellanosa IP, Melosa VP, Wi TE, Whittington WL, Tuazon C, Fluoroquinolone resistance in Neisseria gonorrhoeae in the Republic of the Philippines. Proceedings of the International Union Against the Venereal Diseases and Treponematoses (IUVDT); 1995 Mar 19-23; Singapore. Singapore:Society of Infectious Diseases, 1995:136.
- Abeyewickereme I, Seneratne L, Prithiviraj VB. Rapid emergence of 4-fluoroquinolone resistance with associated decline in penicillinase-producing Neisseria gonorrhoeae in Colombo, Sri Lanka. Genitourin Med. 1996;72:302.PubMedGoogle Scholar
- Knapp JS, Mesola V, Neal SW, Wi TE, Manalastas R, Perine PL, Molecular epidemiology, in 1994, of Neisseria gonorrhoeae in Manila and Cebu City, Republic of the Philippines. Sex Transm Dis. 1997;24:1–7. DOIGoogle Scholar
- Knapp JS, Wongba C, Limpakarnjanarat K, Young NL, Parakh MC, Neal SW, Antimicrobial susceptibilities of strains of Neisseria gonorrhoeae in Bangkok, Thailand: 1994-1995. Sex Transm Dis. In press.
- Schwarcz SK, Zenilman JM, Schnell D, Knapp JS, Hook EW III, Thompson S, National surveillance of antimicrobial resistance in Neisseria gonorrhoeae. JAMA. 1990;264:1413–7. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Gonococcal isolate surveillance project (GISP) Annual Report1994, 4 pages. Available: http://www.cdc.gov/ncidod/dastlr/ gcdir/annrep94.html. Accession date: May 31, 1996.
- Gordon SM, Carlyn CJ, Doyle LJ, Knapp CC, Longworth DL, Hall GS, The emergence of Neisseria gonorrhoeae with decreased susceptibility to ciprofloxacin in Cleveland, Ohio: epidemiology and risk factors. Ann Intern Med. 1996;125:465–70.PubMedGoogle Scholar
- Rice RJ, Knapp JS. Antimicrobial susceptibilities of Neisseria gonorrhoeae strains five distinct resistance phenotypes. Antimicrob Agents Chemother. 1994;38:155–8.PubMedGoogle Scholar
- Belland RJ, Morrison SG, Ison C, Huang WM. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol Microbiol. 1994;14:371–80. DOIPubMedGoogle Scholar
- Stein DC, Danaher RJ, Cook TM. Characterization of a gyrB mutation responsible for low-level nalidixic acid resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1991;35:622–6.PubMedGoogle Scholar
- Deguchi T, Yasuda M, Asano M, Tada K, Iwata H, Komeda H, DNA gyrase mutations in fluoroquinolone-resistant clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1995;39:561–3.PubMedGoogle Scholar
- Deguchi T, Yasuda M, Nakano M, Ozeki S, Ezaki Y, Saito I, Quinolone-resistant Neisseria gonorrhoeae: correlation of alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV with antimicrobial susceptibility profiles. Antimicrob Agents Chemother. 1996;40:1020–3.PubMedGoogle Scholar
- Deguchi T, Yasuda M, Nakano M, Ozeki S, Kanematsu E, Kawada Y, Uncommon occurrence of mutations in the gyrB gene associated with quinolone resistance in clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1996;40:2437–8.PubMedGoogle Scholar
- Short HB, Ploscowe VB, Weiss JA, Young FE. Rapid method for auxotyping multiple strains of Neisseria gonorrhoeae. J Clin Microbiol. 1977;6:244–8.PubMedGoogle Scholar
- Knapp JS, Holmes KK, Bonin P, Hook EW III. Epidemiology of gonorrhea: distribution and temporal changes in auxotype/serovar classes of Neisseria gonorrhoeae. Sex Transm Dis. 1987;14:26–32. DOIPubMedGoogle Scholar
- Tanaka M, Fukuda H, Hirai K, Hosaka M, Matsumoto T, Kumazawa J. Reduced uptake and accumulation of norfloxacin in resistant strains of Neisseria gonorrhoeae isolated in Japan. Genitourin Med. 1994;70:253–5.PubMedGoogle Scholar
Page created: December 21, 2010
Page updated: December 21, 2010
Page reviewed: December 21, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.