Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 1—January 2024
Research

Effect of 2020–21 and 2021–22 Highly Pathogenic Avian Influenza H5 Epidemics on Wild Birds, the Netherlands

Valentina CaliendoComments to Author , Erik Kleyheeg, Nancy Beerens, Kees C.J. Camphuysen, Rommert Cazemier, Armin R.W. Elbers, Ron A.M. Fouchier, Leon Kelder, Thijs Kuiken, Mardik Leopold, Roy Slaterus, Marcel A.H. Spierenburg, Henk van der Jeugd, Hans Verdaat, and Jolianne M. Rijks
Author affiliations: Utrecht University, Utrecht, the Netherlands (V. Caliendo, J.M. Rijks); Sovon, Dutch Centre for Field Ornithology, Nijmegen, the Netherlands (E. Kleyheeg, R. Slaterus); Wageningen Bioveterinary Research, Lelystad, the Netherlands (N. Beerens); Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands (K.C.J. Camphuysen); Wetterskip Fryslan, Leeuwarden, the Netherlands (R. Cazemier); Wageningen Bioveterinary Research, Lelystad (A.R.W. Elbers); Erasmus University Medical Center, Rotterdam, the Netherlands (R.A.M. Fouchier, T. Kuiken); Staatsbosbeheer, Amersfoort, the Netherlands (L. Kelder); Wageningen Marine Research, Den Helder, the Netherlands (M. Leopold, H. Verdaat); Netherlands Food and Consumer Product Safety Authority, Utrecht (M.A.H. Spierenburg); Vogeltrekstation—Dutch Centre for Avian Migration and Demography NIOO-KNAW, Wageningen, the Netherlands. (H. van der Jeugd); Waarneming.nl, Stichting Observation International, Den Helder (H. Verdaat)

Main Article

Table

Reported bird species, nonbreeding population size estimates, number of carcasses, and RT-PCR test results for wild birds sampled during 2020–21 and 2021–22 HPAI epidemics, the Netherlands*

Avian group and species Maximum estimated nonbreeding population size, ×1,000 No. carcasses (mortality rate, %)†
No. carcasses HPAI positive/no. tested
2020–21 2021–22 2020–21 2021–22
Anatidae 7,901 14,309 361/628 173/416
Geese 4,802 8,867 234/332 154/260
Barnacle goose 710–870 3,435 (1.5–4.8) 5,310 (2.4–7.4) 147/171 77/104
Graylag goose 550–670 390 (0.2–0.7) 1,054 (0.7–1.9) 30/59 53/60
Unidentified species NA 607 1,653 35/59 36/60
Swans 996 1,453 60/136 2/17
Mute swan 41–48 305 (2.5–7.4) 479 (3.9–11) 38/93 0
Unidentified species NA 629 969 19/54 2/17
Ducks 2,103 3,985 67/160 17/139
Eurasian wigeon 820–950 125 (<0–0.01) 300 (0.1–0.3) 12/13 1/9
Tufted duck
220–280

45 (0.6–2.5)
34 (0.01–0.1)

1/19
0
Other waterbirds 4,068 21,895 19/162 95/245
Grebes NA 62 164 0/2 4/10
Herons NA 250 232 0/33 3/23
Cormorants NA 234 371 2/14 2/35
Waders NA 1,045 1,713 9/49 10/14
Rallids
NA

327
472

0/2
1/23
Sea bird 2,371 19,340 16/102 75/140
Gulls 1,074 5,538 7/61 37/100
Great black-backed gull 25–100 137 (0.01–5.4) 372 (1.4–14.8) 1/1 1/3
Sandwich tern 27–120‡ 0 5,166 (17.2–>90)§ 0 29/33
Northern gannet
4–27

203
2,215 (32.8–>90)

0
6/11
Raptors 1,011 763 42/155 83/149
Common buzzard 30–50 365 (2.9–12.1) 363 (2.9–12.1) 27/91 55/81
Peregrine falcon
0.5–0.6

27 (18–54)
28 (18–56)

4/5
9/11
Other land birds 3,651 3,850 2/40 6/59
Corvids
NA

271
363

1/24
4/26
Total     16,631 41,519   427/985 357/869

*Data from Sovon (Dutch Centre for Field Ornithology, Nijmegen, the Netherlands). HPAI, highly pathogenic avian influenza; NA, not available; RT-PCR, reverse transcription PCR. †Expressed as fraction of the nonbreeding population. Lower and higher values are calculated considering the 10%–25% collection rates, as described by Kleyheeg et al. (11). ‡Estimated migration maximum. §Expressed as fraction of the migrant population.

Main Article

References
  1. Pohlmann  A, King  J, Fusaro  A, Zecchin  B, Banyard  AC, Brown  IH, et al. Has epizootic become enzootic? Evidence for a fundamental change in the infection dynamics of highly pathogenic avian influenza in Europe, 2021. MBio. 2022;13:e0060922. DOIPubMedGoogle Scholar
  2. King  J, Harder  T, Globig  A, Stacker  L, Günther  A, Grund  C, et al. Highly pathogenic avian influenza virus incursions of subtype H5N8, H5N5, H5N1, H5N4, and H5N3 in Germany during 2020–21. Virus Evol. 2022;8:veac035.
  3. Caliendo  V, Lewis  NS, Pohlmann  A, Baillie  SR, Banyard  AC, Beer  M, et al. Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021. Sci Rep. 2022;12:11729. DOIPubMedGoogle Scholar
  4. Adlhoch  C, Fusaro  A, Gonzales  JL, Kuiken  T, Marangon  S, Niqueux  É, et al.; European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza. Avian influenza overview June - September 2022. EFSA J. 2022;20:e07597.PubMedGoogle Scholar
  5. Wille  M, Barr  IG. Resurgence of avian influenza virus. Science. 2022;376:45960. DOIPubMedGoogle Scholar
  6. Rijks  JM, Leopold  MF, Kühn  S. In ’t Veld R, Schenk F, Brenninkmeijer A, et al. Mass mortality caused by highly pathogenic influenza A(H5N1) virus in Sandwich terns, the Netherlands, 2022. Emerg Infect Dis. 2022;28:2538–42.
  7. Camphuysen  CJ, Gear  SC, Furness  RW. Avian influenza leads to mass mortality of adult great skuas in Foula in summer 2022. Scott. Birds. 2022;42:31223.
  8. Banyard  AC, Lean  FZX, Robinson  C, Howie  F, Tyler  G, Nisbet  C, et al. Detection of highly pathogenic avian influenza virus H5N1 Clade 2.3.4.4b in great skuas: a species of conservation concern in Great Britain. Viruses. 2022;14:212. DOIPubMedGoogle Scholar
  9. European Food Safety Authority, European Centre for Disease Prevention and Control, European Reference Laboratory for Avian Influenza; Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux E, et al. Avian influenza overview September–December 2021. 2021 Dec 22.
  10. Slaterus  R, Schekkerman  H, Kleyheeg  E, Sierdsema  H, Foppen  R. Impact of highly pathogenic avian influenza in bird populations in the Netherlands [in Dutch]. Nijmegen (the Netherlands): Sovon Vogelonderzoek Nederland; 2022.
  11. Kleyheeg  E, Slaterus  R, Bodewes  R, Rijks  JM, Spierenburg  MAH, Beerens  N, et al. Deaths among wild birds during highly pathogenic avian influenza A(H5N8) virus outbreak, the Netherlands. Emerg Infect Dis. 2017;23:20504. DOIPubMedGoogle Scholar
  12. Camphuysen  CJ, Heubeck  M. Marine oil pollution and beached bird surveys: the development of a sensitive monitoring instrument. Environ Pollut. 2001;112:44361. DOIPubMedGoogle Scholar
  13. Camphuysen  CJ. Beached bird surveys in the Netherlands, autumn 2021 and winter 2021/22. NIOZ Report, RWS Centrale Informatievoorziening BM 22.18. Texel (the Netherlands): Royal Netherlands Institute for Sea Research; 2022.
  14. Bollinger  TK, Evelsizer  DD, Dufour  KW, Soos  C, Clark  RG, Wobeser  G, et al. Ecology and management of avian botulism on the Canadian prairies. 2011 [cited 2017 Jun 20]. http://www.phjv.ca/pdf/BotulismReport_FINAL_FullReport_Aug2011.pdf
  15. Poen  MJ, Venkatesh  D, Bestebroer  TM, Vuong  O, Scheuer  RD, Oude Munnink  BB, et al. Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017-18. Virus Evol. 2019;5:vez004. DOIPubMedGoogle Scholar
  16. Beerens  N, Heutink  R, Bergervoet  SA, Harders  F, Bossers  A, Koch  G. Multiple reassorted viruses as cause of highly pathogenic avian influenza A(H5N8) virus epidemic, the netherlands, 2016. Emerg Infect Dis. 2017;23:197481. DOIPubMedGoogle Scholar
  17. Adlhoch  C, Baldinelli  F, Fusaro  A, Terregino  C. Avian influenza, a new threat to public health in Europe? Clin Microbiol Infect. 2022;28:14951. DOIPubMedGoogle Scholar
  18. European Food Safety Authority, European Centre for Disease Prevention and Control, European Reference Laboratory for Avian Influenza; Adlhoch, C, Fusaro, A, Gonzales, JL, Kuiken, T, Marangon, S, Stahl, K, et al. Scientific report: avian influenza overview December 2022–March 2023. EFSA J. 2023;21:7917.
  19. van der Jeugd  HP, Kwak  A. Management of a Dutch resident barnacle goose Branta leucopsis population: How can results from counts, ringing and hunting bag statistics be reconciled? Ambio. 2017;46(Suppl 2):25161. DOIPubMedGoogle Scholar
  20. Voslamber  B, van der Jeugd  H, Koffijberg  K. Numbers, trends, and distribution of breeding goose populations in the Netherlands. Limosa. 20107;80:1–17.
  21. Koffijberg  K, Schekkerman  H, van der Jeugd  H, Hornman  M, van Winden  E. Responses of wintering geese to the designation of goose foraging areas in The Netherlands. Ambio. 2017;46(Suppl 2):24150. DOIPubMedGoogle Scholar
  22. Si  Y, Skidmore  A, Wang  T, de Boer  WF, Toxopeus  AG, Schlerf  M, et al. Distribution of barnacle geese Branta leucopsis in relation to food resources, distance to roosts, and the location of refuges. Ardea. 2011;99:21726. DOIGoogle Scholar
  23. Caliendo  V, Leijten  L, van de Bildt  MWG, Fouchier  RAM, Rijks  JM, Kuiken  T. Pathology and virology of natural highly pathogenic avian influenza H5N8 infection in wild Common buzzards (Buteo buteo). Sci Rep. 2022;12:920. DOIPubMedGoogle Scholar
  24. Camphuysen  KCJ, Kelder  L, Zuhorn  C, Fouchier  R. Avian influenza panzootic leads to mass strandings of northern gannets in the Netherlands, April–October 2022. Limosa. 2022;95:4.
  25. Alexandrou  O, Malakou  M, Catsadorakis  G. The impact of avian influenza 2022 on Dalmatian pelicans was the worst ever wildlife disaster in Greece. Oryx. 2022;56:813. DOIGoogle Scholar
  26. Prosser  DJ, Schley  HL, Simmons  N, Sullivan  JD, Homyack  J, Weegman  M, et al. A lesser scaup (Aythya affinis) naturally infected with Eurasian 2.3.4.4 highly pathogenic H5N1 avian influenza virus: Movement ecology and host factors. Transbound Emerg Dis. 2022;69:e265360. DOIPubMedGoogle Scholar
  27. Christie  KF, Poulson  RL, Seixas  JS, Hernandez  SM. Avian influenza virus status and maternal antibodies in nestling white ibis (Eudocimus albus). Microorganisms. 2021;9:2468. DOIPubMedGoogle Scholar
  28. Maas  R, Rosema  S, van Zoelen  D, Venema  S. Maternal immunity against avian influenza H5N1 in chickens: limited protection and interference with vaccine efficacy. Avian Pathol. 2011;40:8792. DOIPubMedGoogle Scholar
  29. Caliendo  V, Leijten  L, van de Bildt  MWG, Poen  MJ, Kok  A, Bestebroer  T, et al. Long-term protective effect of serial infections with H5N8 highly pathogenic avian influenza virus in wild ducks. J Virol. 2022;96:e0123322. DOIPubMedGoogle Scholar
  30. Gobbo  F, Fornasiero  D, De Marco  MA, Zecchin  B, Mulatti  P, Delogu  M, et al. Active surveillance for highly pathogenic avian influenza viruses in wintering waterbirds in northeast Italy, 2020–2021. Microorganisms. 2021;9:2188. DOIPubMedGoogle Scholar
  31. Rijks  JM, Hesselink  H, Lollinga  P, Wesselman  R, Prins  P, Weesendorp  E, et al. Highly pathogenic avian influenza A(H5N1) virus in wild red foxes, the Netherlands, 2021. Emerg Infect Dis. 2021;27:29602.jrn DOIPubMedGoogle Scholar

Main Article

Page created: November 30, 2023
Page updated: December 20, 2023
Page reviewed: December 20, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external