Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 30, Number 10—October 2024
Research

Epidemiologic Quantities for Monkeypox Virus Clade I from Historical Data with Implications for Current Outbreaks, Democratic Republic of the Congo

Valentina Marziano, Giorgio Guzzetta, Ira Longini1, and Stefano Merler1Comments to Author 
Author affiliations: Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy (V. Marziano, G. Guzzetta, S. Merler); University of Florida, Gainesville, Florida, USA (I. Longini)

Main Article

Figure

Estimates of key epidemiologic parameters for monkeypox virus clade I from historical data with implications for current outbreaks, Democratic Republic of the Congo. A) Cumulative density function of the incubation period, estimated from data on 15 cases reported in a previous study (7). B) Cumulative density function of the serial interval, estimated from data on 32 transmission links associated with household outbreaks (8,9), and on data on 11 transmission links associated with a hospital outbreak (10). C) Cumulative density function of the estimated generation time, based on the same data reported for the serial interval and on estimates of the incubation period. D) Estimates of Rt in the Kamituga Health Zone, obtained from the time-series of hospitalized cases (suspected, probable, and confirmed) (L.M. Masirika et al., unpub. data, https://www.medrxiv.org/content/10.1101/2024.05.10.24307057v1) and using the 2 estimates of the generation times. Lines indicate mean estimates; shaded areas indicate 95% credible intervals. Rt, time-varying reproduction number.

Figure. Estimates of key epidemiologic parameters for monkeypox virus clade I from historical data with implications for current outbreaks, Democratic Republic of the Congo. A) Cumulative density function of the incubation period, estimated from data on 15 cases reported in a previous study (7). B) Cumulative density function of the serial interval, estimated from data on 32 transmission links associated with household outbreaks (8,9), and on data on 11 transmission links associated with a hospital outbreak (10). C) Cumulative density function of the estimated generation time, based on the same data reported for the serial interval and on estimates of the incubation period. D) Estimates of Rt in the Kamituga Health Zone, obtained from the time-series of hospitalized cases (suspected, probable, and confirmed) (L.M. Masirika et al., unpub. data, https://www.medrxiv.org/content/10.1101/2024.05.10.24307057v1) and using the 2 estimates of the generation times. Lines indicate mean estimates; shaded areas indicate 95% credible intervals. Rt, time-varying reproduction number.

Main Article

References
  1. World Health Organization. Mpox—Democratic Republic of the Congo [cited 2024 Jun 25]. https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON522
  2. World Health Organization. Mpox (monkeypox) outbreak 2022 [cited 2024 Jun 25]. https://www.who.int/emergencies/situations/monkeypox-oubreak-2022
  3. Kibungu  EM, Vakaniaki  EH, Kinganda-Lusamaki  E, Kalonji-Mukendi  T, Pukuta  E, Hoff  NA, et al.; International Mpox Research Consortium. Clade I–associated mpox cases associated with sexual contact, the Democratic Republic of the Congo. Emerg Infect Dis. 2024;30:1726. DOIPubMedGoogle Scholar
  4. Katoto  PD, Muttamba  W, Bahizire  E, Malembaka  EB, Bosa  HK, Kazadi  DM, et al. Shifting transmission patterns of human mpox in South Kivu, DR Congo. Lancet Infect Dis. 2024;24:e3545. DOIPubMedGoogle Scholar
  5. Vakaniaki  EH, Kacita  C, Kinganda-Lusamaki  E, O’Toole  Á, Wawina-Bokalanga  T, Mukadi-Bamuleka  D, et al. Sustained human outbreak of a new MPXV clade I lineage in eastern Democratic Republic of the Congo. Nat Med. 2024; Epub ahead of print. DOIPubMedGoogle Scholar
  6. Masirika  LM, Udahemuka  JC, Schuele  L, Ndishimye  P, Otani  S, Mbiribindi  JB, et al. Ongoing mpox outbreak in Kamituga, South Kivu province, associated with monkeypox virus of a novel Clade I sub-lineage, Democratic Republic of the Congo, 2024. Euro Surveill. 2024;29:2400106. DOIPubMedGoogle Scholar
  7. Nolen  LD, Osadebe  L, Katomba  J, Likofata  J, Mukadi  D, Monroe  B, et al. Extended human-to-human transmission during a monkeypox outbreak in the Democratic Republic of the Congo. Emerg Infect Dis. 2016;22:101421. DOIPubMedGoogle Scholar
  8. Formenty  P, Muntasir  MO, Damon  I, Chowdhary  V, Opoka  ML, Monimart  C, et al. Human monkeypox outbreak caused by novel virus belonging to Congo Basin clade, Sudan, 2005. Emerg Infect Dis. 2010;16:153945. DOIPubMedGoogle Scholar
  9. Besombes  C, Mbrenga  F, Malaka  C, Gonofio  E, Schaeffer  L, Konamna  X, et al. Investigation of a mpox outbreak in Central African Republic, 2021-2022. One Health. 2023;16:100523. DOIPubMedGoogle Scholar
  10. Learned  LA, Reynolds  MG, Wassa  DW, Li  Y, Olson  VA, Karem  K, et al. Extended interhuman transmission of monkeypox in a hospital community in the Republic of the Congo, 2003. Am J Trop Med Hyg. 2005;73:42834. DOIPubMedGoogle Scholar
  11. Miura  F, van Ewijk  CE, Backer  JA, Xiridou  M, Franz  E, Op de Coul  E, et al. Estimated incubation period for monkeypox cases confirmed in the Netherlands, May 2022. Euro Surveill. 2022;27:2200448. DOIPubMedGoogle Scholar
  12. Guzzetta  G, Mammone  A, Ferraro  F, Caraglia  A, Rapiti  A, Marziano  V, et al. Early estimates of monkeypox incubation period, generation time, and reproduction number, Italy, May–June 2022. Emerg Infect Dis. 2022;28:207881. DOIPubMedGoogle Scholar
  13. Monkeypox in the Democratic Republic of the Congo: epidemiological situation report sitrep no. 014 (06–12 May 2024) [in French] [cited 2024 Jun 25]. https://reliefweb.int/report/democratic-republic-congo/la-variole-simienne-monkeypox-en-republique-democratique-du-congo-rapport-de-la-situation-epidemiologique-sitrep-no014-06-12-mai-2024
  14. Cori  A, Ferguson  NM, Fraser  C, Cauchemez  S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178:150512. DOIPubMedGoogle Scholar
  15. Thompson  RN, Stockwin  JE, van Gaalen  RD, Polonsky  JA, Kamvar  ZN, Demarsh  PA, et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics. 2019;29:100356. DOIPubMedGoogle Scholar
  16. Wallinga  J, Lipsitch  M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc Biol Sci. 2007;274:599604. DOIPubMedGoogle Scholar
  17. World Health Organization. 2022–24 mpox (monkeypox) outbreak: global trends. Literature summary & epidemic parameters [cited 2024 Jun 25]. https://worldhealthorg.shinyapps.io/mpx_global/#6_Literature_summary__epidemic_parameters
  18. Brosius  I, Van Dijck  C, Coppens  J, Vandenhove  L, Bangwen  E, Vanroye  F, et al.; ITM MPOX Study Group. Presymptomatic viral shedding in high-risk mpox contacts: A prospective cohort study. J Med Virol. 2023;95:e28769. DOIPubMedGoogle Scholar
  19. Miura  F, Backer  JA, van Rijckevorsel  G, Bavalia  R, Raven  S, Petrignani  M, et al.; Dutch Mpox Response Team. Time scales of human mpox transmission in the Netherlands. J Infect Dis. 2024;229:8004. DOIPubMedGoogle Scholar
  20. Fine  PEM, Jezek  Z, Grab  B, Dixon  H. The transmission potential of monkeypox virus in human populations. Int J Epidemiol. 1988;17:64350. DOIPubMedGoogle Scholar
  21. Sun  YQ, Chen  JJ, Liu  MC, Zhang  YY, Wang  T, Che  TL, et al. Mapping global zoonotic niche and interregional transmission risk of monkeypox: a retrospective observational study. Global Health. 2023;19:58. DOIPubMedGoogle Scholar
  22. Charniga  K, McCollum  AM, Hughes  CM, Monroe  B, Kabamba  J, Lushima  RS, et al. Updating reproduction number estimates for mpox in the Democratic Republic of Congo using surveillance data. Am J Trop Med Hyg. 2024;110:5618. DOIPubMedGoogle Scholar
  23. Johnson  PLF, Bergstrom  CT, Regoes  RR, Longini  IM, Halloran  ME, Antia  R. Evolutionary consequences of delaying intervention for monkeypox. Lancet. 2022;400:11913. DOIPubMedGoogle Scholar

Main Article

1These senior authors contributed equally to this article.

Page created: August 28, 2024
Page updated: September 10, 2024
Page reviewed: September 10, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external