Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 3—March 2024
Research Letter

Source Tracing of Leishmania donovani in Emerging Foci of Visceral Leishmaniasis, Western Nepal

Pieter Monsieurs, Kristien Cloots, Surendra Uranw, Megha Raj Banjara, Prakash Ghimire, Sakib Burza, Epco Hasker, Jean-Claude Dujardin, and Malgorzata Anna DomagalskaComments to Author 
Author affiliations: Institute of Tropical Medicine, Antwerp, Belgium (P. Monsieurs, K. Cloots, E. Hasker, J.-C. Dujardin, M.A. Domagalska); BP Koirala Institute of Health Sciences, Dharan, Nepal (S. Uranw); Tribhuvan University, Kathmandu, Nepal (M.R. Banjara, P. Ghimire); London School of Hygiene and Tropical Medicine, London, UK (S. Burza)

Main Article

Figure

Phylogenetic analyses of Leishmania donovani from the ISC, including Nepal, and reference sequences. Trees were based on genomewide single-nucleotide polymorphisms using RAxML (8). A) Unrooted phylogenetic network of the L. donovani complex, showing samples representing the emerging foci (bold text). B) Rooted phylogenetic tree of reference strains of L. donovani from the ISC, showing the branching of 3 samples (022, 023, and 024) originating from emerging foci. Important bootstrap values are indicated on the branches. The West-African LV9 strain is included as an outgroup. BPK72_SuSL represents an ISC1 sample analyzed using SureSelect sequencing (Agilent Technologies; https://www.agilent.com), confirming that the branching of the emerging foci is not a result of a technical artifact. Scale bars indicate number of single-nucleotide polymorphism differences. ISC, Indian subcontinent.

Figure. Phylogenetic analyses of Leishmania donovani from the ISC, including Nepal, and reference sequences. Trees were based on genomewide single-nucleotide polymorphisms using RAxML (8). A) Unrooted phylogenetic network of the L. donovani complex, showing samples representing the emerging foci (bold text). B) Rooted phylogenetic tree of reference strains of L. donovani from the ISC, showing the branching of 3 samples (022, 023, and 024) originating from emerging foci. Important bootstrap values are indicated on the branches. The West-African LV9 strain is included as an outgroup. BPK72_SuSL represents an ISC1 sample analyzed using SureSelect sequencing (Agilent Technologies; https://www.agilent.com), confirming that the branching of the emerging foci is not a result of a technical artifact. Scale bars indicate number of single-nucleotide polymorphism differences. ISC, Indian subcontinent.

Main Article

References
  1. Pandey  K, Dumre  SP, Shah  Y, Acharya  BK, Khanal  L, Pyakurel  UR, et al. Forty years (1980-2019) of visceral leishmaniasis in Nepal: trends and elimination challenges. Trans R Soc Trop Med Hyg. 2023;117:4609. DOIPubMedGoogle Scholar
  2. Pandey  K, Bastola  A, Haiyan  G, Pyakurel  UR, Pandey  BD, Dumre  SP. Emergence of cutaneous leishmaniasis in Nepal. Trop Med Health. 2021;49:72. DOIPubMedGoogle Scholar
  3. Domagalska  MA, Dujardin  JC. Next-generation molecular surveillance of TriTryp diseases. Trends Parasitol. 2020;36:35667. DOIPubMedGoogle Scholar
  4. Domagalska  MA, Imamura  H, Sanders  M, Van den Broeck  F, Bhattarai  NR, Vanaerschot  M, et al. Genomes of Leishmania parasites directly sequenced from patients with visceral leishmaniasis in the Indian subcontinent. Rogers MB, editor. PLoS Negl Trop Dis. 2019;13:e0007900.
  5. Imamura  H, Downing  T, Van den Broeck  F, Sanders  MJ, Rijal  S, Sundar  S, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife. 2016;5:e12613. DOIPubMedGoogle Scholar
  6. Franssen  SU, Durrant  C, Stark  O, Moser  B, Downing  T, Imamura  H, et al. Global genome diversity of the Leishmania donovani complex. eLife. 2020;9:e51243. DOIPubMedGoogle Scholar
  7. Zhang  WW, Ramasamy  G, McCall  LI, Haydock  A, Ranasinghe  S, Abeygunasekara  P, et al. Genetic analysis of Leishmania donovani tropism using a naturally attenuated cutaneous strain. PLoS Pathog. 2014;10:e1004244. DOIPubMedGoogle Scholar
  8. Kozlov  AM, Darriba  D, Flouri  T, Morel  B, Stamatakis  A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:44535. DOIPubMedGoogle Scholar
  9. Rai  K, Bhattarai  NR, Vanaerschot  M, Imamura  H, Gebru  G, Khanal  B, et al. Single locus genotyping to track Leishmania donovani in the Indian subcontinent: Application in Nepal. PLoS Negl Trop Dis. 2017;11:e0005420. DOIPubMedGoogle Scholar
  10. Seblova  V, Dujardin  JC, Rijal  S, Domagalska  MA, Volf  P. ISC1, a new Leishmania donovani population emerging in the Indian sub-continent: Vector competence of Phlebotomus argentipes. Infect Genet Evol. 2019;76:104073. DOIPubMedGoogle Scholar

Main Article

Page created: February 06, 2024
Page updated: February 22, 2024
Page reviewed: February 22, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external