Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 5—May 2024
Dispatch

Antigenic Characterization of Novel Human Norovirus GII.4 Variants San Francisco 2017 and Hong Kong 2019

Kentaro TohmaComments to Author , Michael Landivar, Lauren A. Ford-Siltz, Kelsey A. Pilewski, Joseph A. Kendra, Sandra Niendorf, and Gabriel I. Parra
Author affiliations: US Food and Drug Administration Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA (K. Tohma, M. Landivar, L.A. Ford-Siltz, K.A. Pilewski, J.A. Kendra, G.I. Parra); Robert Koch Institute, Berlin, Germany (S. Niendorf)

Main Article

Figure 1

Monoclonal antibodies raised against 2 major GII.4 variants in a study of novel human norovirus GII.4 variants, San Francisco 2017 and Hong Kong 2019. A) Sydney 2012 mAb panel; B) Farmington Hills 2002 mAb panel. The heatmaps indicate ELISA binding strength (OD405 values) of individual mAbs against virus-like particles from GII.4 Hong Kong 2019 and San Francisco 2017. Antibodies indicate minimal cross-reactivity between new and previously described variants. The binding sites of the mAbs were characterized in a previous study (11). mAbs, monoclonal antibodies; OD405, optical density at 405 nm; P, protruding; S, shell.

Figure 1. Monoclonal antibodies raised against 2 major GII.4 variants in a study of novel human norovirus GII.4 variants, San Francisco 2017 and Hong Kong 2019. A) Sydney 2012 mAb panel; B) Farmington Hills 2002 mAb panel. The heatmaps indicate ELISA binding strength (OD405 values) of individual mAbs against virus-like particles from GII.4 Hong Kong 2019 and San Francisco 2017. Antibodies indicate minimal cross-reactivity between new and previously described variants. The binding sites of the mAbs were characterized in a previous study (11). mAbs, monoclonal antibodies; OD405, optical density at 405 nm; P, protruding; S, shell.

Main Article

References
  1. Lopman  BA, Steele  D, Kirkwood  CD, Parashar  UD. The vast and varied global burden of norovirus: prospects for prevention and control. PLoS Med. 2016;13:e1001999. DOIPubMedGoogle Scholar
  2. Lindesmith  LC, Costantini  V, Swanstrom  J, Debbink  K, Donaldson  EF, Vinjé  J, et al. Emergence of a norovirus GII.4 strain correlates with changes in evolving blockade epitopes. J Virol. 2013;87:280313. DOIPubMedGoogle Scholar
  3. Lindesmith  LC, Donaldson  EF, Lobue  AD, Cannon  JL, Zheng  DP, Vinje  J, et al. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med. 2008;5:e31. DOIPubMedGoogle Scholar
  4. Siebenga  JJ, Lemey  P, Kosakovsky Pond  SL, Rambaut  A, Vennema  H, Koopmans  M. Phylodynamic reconstruction reveals norovirus GII.4 epidemic expansions and their molecular determinants. PLoS Pathog. 2010;6:e1000884. DOIPubMedGoogle Scholar
  5. Tohma  K, Lepore  CJ, Gao  Y, Ford-Siltz  LA, Parra  GI. Population genomics of GII.4 noroviruses reveal complex diversification and new antigenic sites involved in the emergence of pandemic strains. MBio. 2019;10:10. DOIPubMedGoogle Scholar
  6. Parra  GI, Tohma  K, Ford-Siltz  LA, Eguino  P, Kendra  JA, Pilewski  KA, et al. Minimal antigenic evolution after a decade of norovirus GII.4 Sydney_2012 circulation in humans. J Virol. 2023;97:e0171622. DOIPubMedGoogle Scholar
  7. Chan  MC, Roy  S, Bonifacio  J, Zhang  LY, Chhabra  P, Chan  JCM, et al.; for NOROPATROL2. for NOROPATROL2. Detection of norovirus variant GII.4 Hong Kong in Asia and Europe, 2017–2019. Emerg Infect Dis. 2021;27:28993. DOIPubMedGoogle Scholar
  8. Chuchaona  W, Chansaenroj  J, Puenpa  J, Khongwichit  S, Korkong  S, Vongpunsawad  S, et al. Human norovirus GII.4 Hong Kong variant shares common ancestry with GII.4 Osaka and emerged in Thailand in 2016. PLoS One. 2021;16:e0256572. DOIPubMedGoogle Scholar
  9. Chhabra  P, Tully  DC, Mans  J, Niendorf  S, Barclay  L, Cannon  JL, et al. Emergence of novel norovirus GII.4 variant. Emerg Infect Dis. 2024;30:1637. DOIPubMedGoogle Scholar
  10. Lindesmith  LC, Boshier  FAT, Brewer-Jensen  PD, Roy  S, Costantini  V, Mallory  ML, et al. Immune imprinting drives human norovirus potential for global spread. MBio. 2022;13:e0186122. DOIPubMedGoogle Scholar
  11. Tohma  K, Ford-Siltz  LA, Kendra  JA, Parra  GI. Dynamic immunodominance hierarchy of neutralizing antibody responses to evolving GII.4 noroviruses. Cell Rep. 2022;39:110689. DOIPubMedGoogle Scholar
  12. Kendra  JA, Tohma  K, Ford-Siltz  LA, Lepore  CJ, Parra  GI. Antigenic cartography reveals complexities of genetic determinants that lead to antigenic differences among pandemic GII.4 noroviruses. Proc Natl Acad Sci U S A. 2021;118:e2015874118. DOIPubMedGoogle Scholar
  13. Kendra  JA, Tohma  K, Parra  GI. Global and regional circulation trends of norovirus genotypes and recombinants, 1995-2019: A comprehensive review of sequences from public databases. Rev Med Virol. 2022;32:e2354. DOIPubMedGoogle Scholar
  14. Shanker  S, Choi  JM, Sankaran  B, Atmar  RL, Estes  MK, Prasad  BV. Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: implications for epochal evolution. J Virol. 2011;85:863545. DOIPubMedGoogle Scholar
  15. Zhang  XF, Huang  Q, Long  Y, Jiang  X, Zhang  T, Tan  M, et al. An outbreak caused by GII.17 norovirus with a wide spectrum of HBGA-associated susceptibility. Sci Rep. 2015;5:17687. DOIPubMedGoogle Scholar

Main Article

Page created: February 21, 2024
Page updated: April 24, 2024
Page reviewed: April 24, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external