Volume 30, Number 6—June 2024
CME ACTIVITY - Research
Carbapenem-Resistant and Extended-Spectrum β-Lactamase–Producing Enterobacterales in Children, United States, 2016–2020
Table 1
Organism | Incident CRE cases, 2016–2020 |
Incident ESBL-E cases, 2019–2020† |
||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. (%) cases | Isolates submitted for carbapenemase testing, no. | No. (%) CP isolates‡ | No. (%) carbapenemase genes‡ |
No. (%) cases | No. isolates submitted for ESBL testing | No. (%) ESBL-producing organisms§ | ||||
blaKPC | blaNDM | blaOXA-48-like | ||||||||
Escherichia coli | 50 (31.5) | 26 | 5 (19.2) | 0 | 2 (7.7) | 3 (11.5) | 182 (87.9) | 16 | 15 (93.8) | |
Enterobacter cloacae complex | 83 (52.2) | 47 | 1 (2.1) | 1 (2.1) | 0 | 0 | NA | NA | NA | |
Klebsiella aerogenes | 5 (3.1) | 4 | 1 (25.5) | 0 | 1 (25.0) | 0 | NA | NA | NA | |
K. oxytoca | 4 (2.5) | 1 | 1 (100.0) | 1 (100) | 0 | 0 | 2 (1.0) | NA | NA | |
K. pneumoniae |
17 (10.7) |
8 |
1 (12.5) |
0 |
1 (12.5) |
0 |
23 (11.1) |
3 |
3 (100.0) |
|
Total | 159 | 86 | 9 (10.5) | 2 (2.3) | 4 (4.7) | 3 (3.5) | 207 | 19 | 18 (94.7) |
*All incident pediatric cases with available case report form data as of November 28, 2022, were included in this analysis. CP, carbapenemase-producing; CRE, carbapenem-resistant Enterobacterales; ESBL-E, extended-spectrum β-lactamase–producing Enterobacterales; NA, not applicable (no organisms tested; ESBL-E surveillance included Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae). †ESBL-E surveillance began in July 2019 at all participating sites. California, Connecticut, Minnesota, and Oregon do not participate in ESBL-E surveillance. ‡Percentages shown are of isolates submitted. Carbapenemases and colistin resistance genes not listed in the table were not detected for any isolates. §Percentages shown are of isolates submitted. Phenotypic screening for ESBL-E production was performed by using ceftazidime and cefotaxime alone and in combination with clavulanate according to Clinical and Laboratory Standards Institute guidelines (24).
References
- Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019 [cited 2024 Apr 22]. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
- Centers for Disease Control and Prevention. COVID-19: US impact on antimicrobial resistance [cited 2024 Apr 22]. https://www.cdc.gov/drugresistance/pdf/covid19-impact-report-508.pdf
- Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(suppl_1):S28–36. DOIPubMedGoogle Scholar
- Braykov NP, Eber MR, Klein EY, Morgan DJ, Laxminarayan R. Trends in resistance to carbapenems and third-generation cephalosporins among clinical isolates of Klebsiella pneumoniae in the United States, 1999-2010. Infect Control Hosp Epidemiol. 2013;34:259–68. DOIPubMedGoogle Scholar
- Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J, Scott J, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US communities, 2012–2013. JAMA. 2015;314:1479–87. DOIPubMedGoogle Scholar
- Kritsotakis EI, Tsioutis C, Roumbelaki M, Christidou A, Gikas A. Antibiotic use and the risk of carbapenem-resistant extended-spectrum-β-lactamase-producing Klebsiella pneumoniae infection in hospitalized patients: results of a double case-control study. J Antimicrob Chemother. 2011;66:1383–91. DOIPubMedGoogle Scholar
- Swaminathan M, Sharma S, Poliansky Blash S, Patel G, Banach DB, Phillips M, et al. Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infect Control Hosp Epidemiol. 2013;34:809–17. DOIPubMedGoogle Scholar
- Marchaim D, Chopra T, Bhargava A, Bogan C, Dhar S, Hayakawa K, et al. Recent exposure to antimicrobials and carbapenem-resistant Enterobacteriaceae: the role of antimicrobial stewardship. Infect Control Hosp Epidemiol. 2012;33:817–30. DOIPubMedGoogle Scholar
- Duffy N, Karlsson M, Reses HE, Campbell D, Daniels J, Stanton RA, et al. Epidemiology of extended-spectrum β-lactamase-producing Enterobacterales in five US sites participating in the Emerging Infections Program, 2017. Infect Control Hosp Epidemiol. 2022;43:1586–94. DOIPubMedGoogle Scholar
- Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin Infect Dis. 2023;ciad428
- Romandini A, Pani A, Schenardi PA, Pattarino GAC, De Giacomo C, Scaglione F. Antibiotic resistance in pediatric infections: global emerging threats, predicting the near future. Antibiotics (Basel). 2021;10:393. DOIPubMedGoogle Scholar
- Logan LK, Bonomo RA. Metallo-β-lactamase (MBL)-producing Enterobacteriaceae in United States children. Open Forum Infect Dis. 2016;3:
ofw090 . DOIPubMedGoogle Scholar - Logan LK, Medernach RL, Domitrovic TN, Rispens JR, Hujer AM, Qureshi NK, et al. The clinical and molecular epidemiology of CTX-M-9 group producing Enterobacteriaceae infections in children. Infect Dis Ther. 2019;8:243–54. DOIPubMedGoogle Scholar
- Logan LK, Hujer AM, Marshall SH, Domitrovic TN, Rudin SD, Zheng X, et al. Analysis of beta-lactamase resistance determinants in Enterobacteriaceae from Chicago children: a multicenter survey. Antimicrob Agents Chemother. 2016;60:3462–9. DOIPubMedGoogle Scholar
- Logan LK, Rispens JR, Medernach RL, Domitrovic TN, Hujer AM, Marshall SH, et al. A multicentered study of the clinical and molecular epidemiology of TEM- and SHV-type extended-spectrum beta-lactamase producing Enterobacterales infections in children. Pediatr Infect Dis J. 2021;40:39–43. DOIPubMedGoogle Scholar
- Logan LK, Medernach RL, Rispens JR, Marshall SH, Hujer AM, Domitrovic TN, et al. Community origins and regional differences highlight risk of plasmid-mediated fluoroquinolone resistant Enterobacteriaceae infections in children. Pediatr Infect Dis J. 2019;38:595–9. DOIPubMedGoogle Scholar
- Zerr DM, Weissman SJ, Zhou C, Kronman MP, Adler AL, Berry JE, et al. The molecular and clinical epidemiology of extended-spectrum cephalosporin- and carbapenem-resistant Enterobacteriaceae at 4 US pediatric hospitals. J Pediatric Infect Dis Soc. 2017;6:366–75. DOIPubMedGoogle Scholar
- Chiotos K, Tamma PD, Flett KB, Naumann M, Karandikar MV, Bilker WB, et al. Multicenter study of the risk factors for colonization or infection with carbapenem-resistant Enterobacteriaceae in children. Antimicrob Agents Chemother. 2017;61:e01440–17. DOIPubMedGoogle Scholar
- Meropol SB, Haupt AA, Debanne SM. Incidence and outcomes of infections caused by multidrug-resistant Enterobacteriaceae in children, 2007–2015. J Pediatric Infect Dis Soc. 2018;7:36–45. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Multi-site Gram-negative Surveillance Initiative [cited 2023 Apr 24]. https://www.cdc.gov/hai/eip/mugsi.html#anchor_46658
- US Census Bureau. 2020 Population estimates 2020 [cited 2023 Jan 19]. https://www.census.gov/quickfacts/fact/faq/US/PST045221
- Migliavacca R, Docquier JD, Mugnaioli C, Amicosante G, Daturi R, Lee K, et al. Simple microdilution test for detection of metallo-β-lactamase production in Pseudomonas aeruginosa. J Clin Microbiol. 2002;40:4388–90. DOIPubMedGoogle Scholar
- Karlsson M, Lutgring JD, Ansari U, Lawsin A, Albrecht V, McAllister G, et al. Molecular characterization of carbapenem-resistant Enterobacterales collected in the United States. Microb Drug Resist. 2022;28:389–97. DOIPubMedGoogle Scholar
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 33rd edition. Supplement M100. Wayne (PA): The Institute; 2023.
- Rasheed JK, Kitchel B, Zhu W, Anderson KF, Clark NC, Ferraro MJ, et al. New Delhi metallo-β-lactamase-producing Enterobacteriaceae, United States. Emerg Infect Dis. 2013;19:870–8. DOIPubMedGoogle Scholar
- Lutgring JD, Zhu W, de Man TJB, Avillan JJ, Anderson KF, Lonsway DR, et al. Phenotypic and genotypic characterization of Enterobacteriaceae producing oxacillinase-48-like carbapenemases, United States. Emerg Infect Dis. 2018;24:700–9. DOIPubMedGoogle Scholar
- Campbell D, Daniels J, Rasheed JK, Karlsson M. Development of a multiplex TaqMan probe-based real-time PCR assay for detection of blaIMP variants. Poster presented at: ASM Microbe 2017; New Orleans, LA, USA; 2017 June 1–5.
- Prussing C, Canulla T, Singh N, McAuley P, Gosciminski M, King E, et al. Characterization of the first carbapenem-resistant Pseudomonas aeruginosa clinical isolate harboring blaSIM-1 from the United States. Antimicrob Agents Chemother. 2021;65:
e0106621 . DOIPubMedGoogle Scholar - Daniels JB, Campbell D, Boyd S, Ansari U, Lutgring J, Rasheed JK, et al. Development and validation of a Clinical Laboratory Improvement Amendments-compliant multiplex real-time PCR assay for detection of mcr genes. Microb Drug Resist. 2019;25:991–6. DOIPubMedGoogle Scholar
- Logan LK, Renschler JP, Gandra S, Weinstein RA, Laxminarayan R; Centers for Disease Control; Prevention Epicenters Program. Carbapenem-Resistant Enterobacteriaceae in Children, United States, 1999-2012. Emerg Infect Dis. 2015;21:2014–21. DOIPubMedGoogle Scholar
- Chea N, Bulens SN, Kongphet-Tran T, Lynfield R, Shaw KM, Vagnone PS, et al. Improved phenotype-based definition for identifying carbapenemase producers among carbapenem-resistant Enterobacteriaceae. Emerg Infect Dis. 2015;21:1611–6. DOIPubMedGoogle Scholar
- Thaden JT, Fowler VG Jr, Sexton DJ, Anderson DJ. Increasing incidence of extended-spectrum beta-lactamase-producing Escherichia coli in community hospitals throughout the southeastern United States. Infect Control Hosp Epidemiol. 2016;37:49–54. DOIPubMedGoogle Scholar
- Horie A, Nariai A, Katou F, Abe Y, Saito Y, Koike D, et al. Increased community-acquired upper urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in children and the efficacy of flomoxef and cefmetazole. Clin Exp Nephrol. 2019;23:1306–14. DOIPubMedGoogle Scholar
- Collingwood JD, Yarbrough AH, Boppana SB, Dangle PP. Increasing prevalence of pediatric community-acquired UTI by extended spectrum β-lactamase-producing E. coli: cause for concern. Pediatr Infect Dis J. 2023;42:106–9. DOIPubMedGoogle Scholar
- Yin L, He L, Miao J, Yang W, Wang X, Ma J, et al. Carbapenem-resistant Enterobacterales colonization and subsequent infection in a neonatal intensive care unit in Shanghai, China. Infect Prev Pract. 2021;3:
100147 . DOIPubMedGoogle Scholar - Flannery DD, Chiotos K, Gerber JS, Puopolo KM. Neonatal multidrug-resistant gram-negative infection: epidemiology, mechanisms of resistance, and management. Pediatr Res. 2022;91:380–91. DOIPubMedGoogle Scholar
- Yaffee AQ, Roser L, Daniels K, Humbaugh K, Brawley R, Thoroughman D, et al. Notes from the field: Verona integron-encoded metallo-beta-lactamase-producing carbapenem-resistant Enterobacteriaceae in a neonatal and adult intensive care unit—Kentucky, 2015. MMWR Morb Mortal Wkly Rep. 2016;65:190. DOIPubMedGoogle Scholar
- Principe L, Meroni E, Conte V, Mauri C, Di Pilato V, Giani T, et al. Mother-to-child transmission of KPC-producing Klebsiella pneumoniae: potential relevance of a low microbial urinary load for screening purposes. J Hosp Infect. 2018;98:314–6. DOIPubMedGoogle Scholar
- Sotgiu G, Are BM, Pesapane L, Palmieri A, Muresu N, Cossu A, et al. Nosocomial transmission of carbapenem-resistant Klebsiella pneumoniae in an Italian university hospital: a molecular epidemiological study. J Hosp Infect. 2018;99:413–8. DOIPubMedGoogle Scholar
- Islam S, Selvarangan R, Kanwar N, McHenry R, Chappell JD, Halasa N, et al. Intestinal carriage of third-generation cephalosporin-resistant and extended-spectrum β-lactamase-producing Enterobacteriaceae in healthy US children. J Pediatric Infect Dis Soc. 2018;7:234–40. DOIPubMedGoogle Scholar
- Wernroth ML, Peura S, Hedman AM, Hetty S, Vicenzi S, Kennedy B, et al. Development of gut microbiota during the first 2 years of life. Sci Rep. 2022;12:9080. DOIPubMedGoogle Scholar
- Darda VM, Iosifidis E, Antachopoulos C, Kirvasilis F, Zarras C, Simitsopoulou M, et al. A longitudinal study of spontaneous gut decolonization of carbapenem-resistant gram-negative bacteria in neonatal and pediatric patients. Pediatr Infect Dis J. 2022;41:648–53. DOIPubMedGoogle Scholar
- Dierikx TH, Visser DH, Benninga MA, van Kaam AHLC, de Boer NKH, de Vries R, et al. The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: A systematic review. J Infect. 2020;81:190–204. DOIPubMedGoogle Scholar