Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 31, Number 1—January 2025
Research

Neisseria meningitidis Serogroup Y Sequence Type 1466 and Urogenital Infections

Sebastiaan J. van HalComments to Author , Thomas Le, Frances Jenkins, Ratan L. Kundu, E. Athena Limnios, Lucy A. McNamara, Shalabh Sharma, Ellen N. Kersh, and Monica M. Lahra
Author affiliation: University of Sydney, Sydney, New South Wales, Australia (S.J. van Hal); Royal Prince Alfred Hospital, Sydney (S.J. van Hal, T. Le, F. Jenkins); World Health Organization Collaborating Centre for STI and AMR at Prince of Wales Hospital, Randwick, New South Wales, Australia (R.L. Kundu, E.A. Limnios, M.M. Lahra); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (L.A. McNamara, S. Sharma, E.N. Kersh); World Health Organization Collaborating Centre for STI Surveillance at Centers for Disease Control and Prevention, Atlanta (E.N. Kersh); The University of New South Wales, Sydney (M.M. Lahra)

Main Article

Figure 1

Relatedness of Neisseria meningitidis serogroup Y ST1466 isolates from Australia and the United States compared with isolates from other countries. A) Timed maximum-likelihood phylogeny of included isolates of serogroup Y ST1466. Associated metadata are shown to the right of the tree. B) Genomic epidemiology of ST1466 showing transmission lines generated using Nextstrain (24). ST, sequence type.

Figure 1. Relatedness of Neisseria meningitidis serogroup Y ST1466 isolates from Australia and the United States compared with isolates from other countries. A) Timed maximum-likelihood phylogeny of included isolates of serogroup Y ST1466. Associated metadata are shown to the right of the tree. B) Genomic epidemiology of ST1466 showing transmission lines generated using Nextstrain (24). ST, sequence type.

Main Article

References
  1. Vázquez  JA, de la Fuente  L, Berron  S, O’Rourke  M, Smith  NH, Zhou  J, et al. Ecological separation and genetic isolation of Neisseria gonorrhoeae and Neisseria meningitidis. Curr Biol. 1993;3:56772. DOIPubMedGoogle Scholar
  2. Caugant  DA, Brynildsrud  OB. Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis. Nat Rev Microbiol. 2020;18:8496. DOIPubMedGoogle Scholar
  3. Quillin  SJ, Seifert  HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol. 2018;16:22640. DOIPubMedGoogle Scholar
  4. Ladhani  SN, Lucidarme  J, Parikh  SR, Campbell  H, Borrow  R, Ramsay  ME. Meningococcal disease and sexual transmission: urogenital and anorectal infections and invasive disease due to Neisseria meningitidis. Lancet. 2020;395:186577. DOIPubMedGoogle Scholar
  5. Carpenter  CM, Charles  R. Isolation of Meningococcus from the genitourinary tract of seven patients. Am J Public Health Nations Health. 1942;32:6403. DOIPubMedGoogle Scholar
  6. Tzeng  YL, Bazan  JA, Turner  AN, Wang  X, Retchless  AC, Read  TD, et al. Emergence of a new Neisseria meningitidis clonal complex 11 lineage 11.2 clade as an effective urogenital pathogen. Proc Natl Acad Sci U S A. 2017;114:423742. DOIPubMedGoogle Scholar
  7. Brooks  A, Lucidarme  J, Campbell  H, Campbell  L, Fifer  H, Gray  S, et al. Detection of the United States Neisseria meningitidis urethritis clade in the United Kingdom, August and December 2019 - emergence of multiple antibiotic resistance calls for vigilance. Euro Surveill. 2020;25:2000375. DOIPubMedGoogle Scholar
  8. Takahashi  H, Morita  M, Yasuda  M, Ohama  Y, Kobori  Y, Kojima  M, et al. Detection of novel US Neisseria meningitidis urethritis clade subtypes in Japan. Emerg Infect Dis. 2023;29:22107. DOIPubMedGoogle Scholar
  9. Rodriguez  EI, Tzeng  YL, Stephens  DS. Continuing genomic evolution of the Neisseria meningitidis cc11.2 urethritis clade, NmUC: a narrative review. Microb Genom. 2023;9:001113. DOIPubMedGoogle Scholar
  10. Oliver  SE, Retchless  AC, Blain  AE, McNamara  LA, Ahrabifard  S, Farley  M, et al. Risk factors for invasive meningococcal disease belonging to a novel urethritis clade of Neisseria meningitidis—United States, 2013–2017. Open Forum Infect Dis. 2022;9:ofac035. DOIPubMedGoogle Scholar
  11. McNamara  LA, Potts  CC, Blain  A, Topaz  N, Apostol  M, Alden  NB, et al. Invasive meningococcal disease due to nongroupable Neisseria meningitidis—active bacterial core surveillance sites, 2011–2016. Open Forum Infect Dis. 2019;6:ofz190. DOIPubMedGoogle Scholar
  12. Retchless  AC, Chen  A, Chang  HY, Blain  AE, McNamara  LA, Mustapha  MM, et al. Using Neisseria meningitidis genomic diversity to inform outbreak strain identification. PLoS Pathog. 2021;17:e1009586. DOIPubMedGoogle Scholar
  13. Lahra  MM, Latham  NH, Templeton  DJ, Read  P, Carmody  C, Ryder  N, et al. Investigation and response to an outbreak of Neisseria meningitidis serogroup Y ST-1466 urogenital infections, Australia. Commun Dis Intell (2018). 2024;48:48. DOIPubMedGoogle Scholar
  14. Chen  S, Zhou  Y, Chen  Y, Gu  J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i88490. DOIPubMedGoogle Scholar
  15. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  16. Jolley  KA, Bray  JE, Maiden  MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. DOIPubMedGoogle Scholar
  17. Rubis  AB, Howie  RL, Marasini  D, Sharma  S, Marjuki  H, McNamara  LA. Notes from the field: increase in meningococcal disease among persons with HIV—United States, 2022. MMWR Morb Mortal Wkly Rep. 2023;72:6634. DOIPubMedGoogle Scholar
  18. Marjuki  H, Topaz  N, Rodriguez-Rivera  LD, Ramos  E, Potts  CC, Chen  A, et al. Whole-genome sequencing for characterization of capsule locus and prediction of serogroup of invasive meningococcal isolates. J Clin Microbiol. 2019;57:e0160918. DOIPubMedGoogle Scholar
  19. Wick  RR, Judd  LM, Gorrie  CL, Holt  KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol. 2017;13:e1005595. DOIPubMedGoogle Scholar
  20. Seeman  T. SNIPPY. 2020 [cited 2024 Dec 6]. https://github.com/tseemann/snippy
  21. Croucher  NJ, Page  AJ, Connor  TR, Delaney  AJ, Keane  JA, Bentley  SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15. DOIPubMedGoogle Scholar
  22. Minh  BQ, Schmidt  HA, Chernomor  O, Schrempf  D, Woodhams  MD, von Haeseler  A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:15304. DOIPubMedGoogle Scholar
  23. Didelot  X, Croucher  NJ, Bentley  SD, Harris  SR, Wilson  DJ. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 2018;46:e134. DOIPubMedGoogle Scholar
  24. Hadfield  J, Megill  C, Bell  SM, Huddleston  J, Potter  B, Callender  C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34:41213. DOIPubMedGoogle Scholar
  25. Tonkin-Hill  G, MacAlasdair  N, Ruis  C, Weimann  A, Horesh  G, Lees  JA, et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020;21:180. DOIPubMedGoogle Scholar
  26. Seemann  T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:20689. DOIPubMedGoogle Scholar
  27. Brynildsrud  O, Bohlin  J, Scheffer  L, Eldholm  V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016;17:238. DOIPubMedGoogle Scholar
  28. Paradis  E, Claude  J, Strimmer  K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:28990. DOIPubMedGoogle Scholar
  29. Leong  LEX, Coldbeck-Shackley  RC, McMillan  M, Bratcher  HB, Turra  M, Lawrence  A, et al. The genomic epidemiology of Neisseria meningitidis carriage from a randomised controlled trial of 4CMenB vaccination in an asymptomatic adolescent population. Lancet Reg Health West Pac. 2023;43:100966. DOIPubMedGoogle Scholar
  30. Workowski  KA, Bachmann  LH, Chan  PA, Johnston  CM, Muzny  CA, Park  I, et al. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm Rep. 2021;70:1187. DOIPubMedGoogle Scholar

Main Article

Page created: December 04, 2024
Page updated: December 22, 2024
Page reviewed: December 22, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external