Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Volume 31, Number 10—October 2025

Dispatch

Zoonotic Soil-Transmitted Helminth Infections among Humans, Gabon

Huan Zhao, Polydor Ngoy Mutombo, Rodrigue Mintsa-Nguema, Dieudonné Nkoghe, Julienne Atsame, Matthew Watts, Catherine Gordon, and Richard S. BradburyComments to Author 
Author affiliation: James Cook University, Townsville, Queensland, Australia (H. Zhao, R.S. Bradbury); National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia (P.N. Mutombo); Centres for Disease Control and Prevention, Addis Ababa, Ethiopia (P.N. Mutombo); National Centre for Scientific and Technological Research of Gabon, Libreville, Gabon (R. Mintsa-Nguema); Programme National de Lutte contre les Maladies Parasitaires, Ministère de la Santé, Libreville (D. Nkoghe, J. Atsame); Westmead Hospital, Westmead, New South Wales, Australia (M. Watts); University of Sydney, Sydney, New South Wales, Australia (M. Watts); University of Queensland, Brisbane, Queensland, Australia (C. Gordon); QIMR Berghofer Medical Research Institute, Brisbane (C. Gordon)

Main Article

Figure 2

Maximum-likelihood phylogeny of zoonotic soil-transmitted helminths from human infections, Gabon. A) Necator spp. hookworms; color-coded groups are labeled per nomenclature by Hasegawa et al. (4). B) Strongyloides fuelleborni fuelleborni threadworms; color-coded groups represent geographic regions. Trees are based on cox1 sequences and were created by using MEGA 11 (https://www.megasoftware.net) and Bayesian inference using MrBayes (https://github.com/NBISweden/MrBayes). Bayesian posterior probability and maximum-likelihood bootstrap support percentages (1,000 bootstrap replicates) are indicated at the nodes. Bold font and black circles indicate sequences obtained in this study. Published sequences are annotated with the country of origin, host species, and GenBank accession numbers. Scale bars indicate nucleotide substitutions per site. CAR, Central African Republic

Figure 2. Maximum-likelihood phylogeny of zoonotic soil-transmitted helminths from human infections, Gabon. A) Necator spp. hookworms; color-coded groups are labeled per nomenclature by Hasegawa et al. (4). B) Strongyloides fuelleborni fuelleborni threadworms; color-coded groups represent geographic regions. Trees are based on cox1 sequences and were created by using MEGA 11 (https://www.megasoftware.net) and Bayesian inference using MrBayes (https://github.com/NBISweden/MrBayes). Bayesian posterior probability and maximum-likelihood bootstrap support percentages (1,000 bootstrap replicates) are indicated at the nodes. Bold font and black circles indicate sequences obtained in this study. Published sequences are annotated with the country of origin, host species, and GenBank accession numbers. Scale bars indicate nucleotide substitutions per site. CAR, Central African Republic

Main Article

References
  1. Devaux  CA, Mediannikov  O, Medkour  H, Raoult  D. Infectious disease risk across the growing human-non human primate interface: a review of the evidence. Front Public Health. 2019;7:305. DOIPubMedGoogle Scholar
  2. Vancutsem  C, Achard  F, Pekel  J-F, Vieilledent  G, Carboni  S, Simonetti  D, et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci Adv. 2021;7:eabe1603. DOIGoogle Scholar
  3. Kalousová  B, Hasegawa  H, Petrželková  KJ, Sakamaki  T, Kooriyma  T, Modrý  D. Adult hookworms (Necator spp.) collected from researchers working with wild western lowland gorillas. Parasit Vectors. 2016;9:75. DOIPubMedGoogle Scholar
  4. Hasegawa  H, Modrý  D, Kitagawa  M, Shutt  KA, Todd  A, Kalousová  B, et al. Humans and great apes cohabiting the forest ecosystem in central african republic harbour the same hookworms. PLoS Negl Trop Dis. 2014;8:e2715. DOIPubMedGoogle Scholar
  5. Potters  I, Micalessi  I, Van Esbroeck  M, Gils  S, Theunissen  C. A rare case of imported Strongyloides fuelleborni infection in a Belgian student. Clin Infect Pract. 2020;7–8:100031. DOIGoogle Scholar
  6. Hasegawa  H, Shigyo  M, Yanai  Y, McLennan  MR, Fujita  S, Makouloutou  P, et al. Molecular features of hookworm larvae (Necator spp.) raised by coproculture from Ugandan chimpanzees and Gabonese gorillas and humans. Parasitol Int. 2017;66:125. DOIPubMedGoogle Scholar
  7. Young  KH, Bullock  SL, Melvin  DM, Spruill  CL. Ethyl acetate as a substitute for diethyl ether in the formalin-ether sedimentation technique. J Clin Microbiol. 1979;10:8523. DOIPubMedGoogle Scholar
  8. Barratt  JLN, Lane  M, Talundzic  E, Richins  T, Robertson  G, Formenti  F, et al. A global genotyping survey of Strongyloides stercoralis and Strongyloides fuelleborni using deep amplicon sequencing. PLoS Negl Trop Dis. 2019;13:e0007609. DOIPubMedGoogle Scholar
  9. Jaleta  TG, Zhou  S, Bemm  FM, Schär  F, Khieu  V, Muth  S, et al. Different but overlapping populations of Strongyloides stercoralis in dogs and humans-Dogs as a possible source for zoonotic strongyloidiasis. PLoS Negl Trop Dis. 2017;11:e0005752. DOIPubMedGoogle Scholar
  10. Hasegawa  H, Kalousova  B, McLennan  MR, Modry  D, Profousova-Psenkova  I, Shutt-Phillips  KA, et al. Strongyloides infections of humans and great apes in Dzanga-Sangha Protected Areas, Central African Republic and in degraded forest fragments in Bulindi, Uganda. Parasitol Int. 2016;65(5 Pt A):36770. DOIPubMedGoogle Scholar
  11. Richins  T, Sapp  SGH, Ketzis  JK, Willingham  AL, Mukaratirwa  S, Qvarnstrom  Y, et al. Genetic characterization of Strongyloides fuelleborni infecting free-roaming African vervets (Chlorocebus aethiops sabaeus) on the Caribbean island of St. Kitts. Int J Parasitol Parasites Wildl. 2023;20:15361. DOIPubMedGoogle Scholar
  12. Pafčo  B, Kreisinger  J, Čížková  D, Pšenková-Profousová  I, Shutt-Phillips  K, Todd  A, et al. Genetic diversity of primate strongylid nematodes: Do sympatric nonhuman primates and humans share their strongylid worms? Mol Ecol. 2019;28:478697. DOIPubMedGoogle Scholar
  13. Ilík  V, Kreisinger  J, Modrý  D, Schwarz  EM, Tagg  N, Mbohli  D, et al. High diversity and sharing of strongylid nematodes in humans and great apes co-habiting an unprotected area in Cameroon. PLoS Negl Trop Dis. 2023;17:e0011499. DOIPubMedGoogle Scholar
  14. Hira  PR, Patel  BG. Human strongyloidiasis due to the primate species Strongyloides fülleborni. Trop Geogr Med. 1980;32:239.PubMedGoogle Scholar
  15. de Ree  V, Nath  TC, Barua  P, Harbecke  D, Lee  D, Rödelsperger  C, et al. Genomic analysis of Strongyloides stercoralis and Strongyloides fuelleborni in Bangladesh. PLoS Negl Trop Dis. 2024;18:e0012440. DOIPubMedGoogle Scholar

Main Article

Page created: September 15, 2025
Page updated: September 25, 2025
Page reviewed: September 25, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external