Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Supplement—April 2025
SUPPLEMENT ISSUE
Supplement

Integrating Genomic Data into Public Health Surveillance for Multidrug-Resistant Organisms, Washington, USA

Laura Marcela Torres1Comments to Author , Jared Johnson1, Audrey Valentine1, Audrey Brezak, Emily C. Schneider, Marisa D’Angeli, Jennifer Morgan, Claire Brostrom-Smith, Chi N. Hua, Michael Tran, Darren Lucas, Joenice Gonzalez De Leon, Drew MacKellar, Philip Dykema, Kelly J. Kauber, and Allison Black
Author affiliation: Washington State Department of Health, Shoreline, Washington, USA (L.M. Torres, J. Johnson, A. Valentine, A. Brezak, E.C. Schneider, M. D’Angeli, C.N. Hua, M. Tran, D. Lucas, J. Gonzalez De Leon, D. Mackellar, P. Dykema, K.J. Kauber, A. Black); Public Health Seattle and King County, Seattle, Washington, USA (J. Morgan, C. Brostrom-Smith)

Main Article

Table 2

Results of pilot study of genomic and epidemiologic surveillance of outbreaks of multidrug-resistant organism infections, Washington, USA*

Outbreak ID Pathogen No. health facilities No. cases, n = 36 No. isolates sequenced, n = 43 Epidemiologically linked only, n = 5 Epidemiologically and genomically linked, n = 32 Genomically linked only, n = 6
1 Pseudomonas aeruginosa 1 5 8† 0 6 2
2 Acinetobacter baumannii 1 5 6‡ 0 6 0
3 A. baumannii 1 6 6 0 6 0
4 A. baumannii 1 7 10† 3 6 1
5 A.baumannii 5 8 8 0 5 3
6 Klebsiella pneumoniae 1 5 5 3 0

*ID, identification. †One case had 3 isolates sequenced and 1 had 2 isolates sequenced. ‡One case had 2 isolates sequenced. §Sample 5 was placed into a separate genomic cluster due to relatively large pairwise genetic differences between this isolate and the remaining outbreak 6 isolates, as determined by PopPUNK (16).

Main Article

References
  1. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. 2019 Nov [cited 2024 Apr 8]. https://stacks.cdc.gov/view/cdc/82532
  2. Bonomo  RA, Burd  EM, Conly  J, Limbago  BM, Poirel  L, Segre  JA, et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis. 2018;66:12907. DOIPubMedGoogle Scholar
  3. Hardiman  CA, Weingarten  RA, Conlan  S, Khil  P, Dekker  JP, Mathers  AJ, et al. Horizontal transfer of carbapenemase-encoding plasmids and comparison with hospital epidemiology data. Antimicrob Agents Chemother. 2016;60:49109. DOIPubMedGoogle Scholar
  4. Mathers  AJ, Cox  HL, Kitchel  B, Bonatti  H, Brassinga  AKC, Carroll  J, et al. Molecular dissection of an outbreak of carbapenem-resistant enterobacteriaceae reveals Intergenus KPC carbapenemase transmission through a promiscuous plasmid. MBio. 2011;2:e0020411. DOIPubMedGoogle Scholar
  5. Siegel  JD, Rhinehart  E, Jackson  M, Chiarello  L. Management of multidrug-resistant organisms in healthcare settings, 2006. 2006 [cited 2024 Jul 17]. https://www.cdc.gov/infection-control/media/pdfs/Guideline-MDRO-H.pdf
  6. Tacconelli  E, Sifakis  F, Harbarth  S, Schrijver  R, van Mourik  M, Voss  A, et al.; EPI-Net COMBACTE-MAGNET Group. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018;18:e99106. DOIPubMedGoogle Scholar
  7. Waddington  C, Carey  ME, Boinett  CJ, Higginson  E, Veeraraghavan  B, Baker  S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med. 2022;14:15. DOIPubMedGoogle Scholar
  8. World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report 2022. 2022 [cited 2024 Jul 17]. https://iris.who.int/bitstream/handle/10665/364996/9789240062702-eng.pdf
  9. Branch-Elliman  W, Sundermann  AJ, Wiens  J, Shenoy  ES. The future of automated infection detection: Innovation to transform practice (Part III/III). Antimicrob Steward Healthc Epidemiol. 2023;3:e26. DOIPubMedGoogle Scholar
  10. Black  A, Dudas  G. The applied genomic epidemiology handbook: a practical guide to leveraging pathogen genomic data in public health. 1st edition. Boca Raton (FL): Chapman & Hall/CRC Press; 2024.
  11. Peacock  SJ, Parkhill  J, Brown  NM. Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens. Microbiology (Reading). 2018;164:12139. DOIPubMedGoogle Scholar
  12. Sherry  NL, Gorrie  CL, Kwong  JC, Higgs  C, Stuart  RL, Marshall  C, et al.; Controlling Superbugs Study Group. Multi-site implementation of whole genome sequencing for hospital infection control: A prospective genomic epidemiological analysis. Lancet Reg Health West Pac. 2022;23:100446. DOIPubMedGoogle Scholar
  13. Baker  KS, Jauneikaite  E, Nunn  JG, Midega  JT, Atun  R, Holt  KE, et al.; SEDRIC Genomics Surveillance Working Group. Evidence review and recommendations for the implementation of genomics for antimicrobial resistance surveillance: reports from an international expert group. Lancet Microbe. 2023;4:e10359. DOIPubMedGoogle Scholar
  14. Wareth  G, Brandt  C, Sprague  LD, Neubauer  H, Pletz  MW. WGS based analysis of acquired antimicrobial resistance in human and non-human Acinetobacter baumannii isolates from a German perspective. BMC Microbiol. 2021;21:210. DOIPubMedGoogle Scholar
  15. Centers for Disease Control and Prevention. Antimicrobial Resistance Laboratory Network testing. 2024 [cited 2024 Jul 17]. https://www.cdc.gov/antimicrobial-resistance-laboratory-networks/php/about/testing-services.html
  16. Lees  JA, Harris  SR, Tonkin-Hill  G, Gladstone  RA, Lo  SW, Weiser  JN, et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 2019;29:30416. DOIPubMedGoogle Scholar
  17. Croucher  NJ, Page  AJ, Connor  TR, Delaney  AJ, Keane  JA, Bentley  SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e1515. DOIPubMedGoogle Scholar
  18. Nguyen  LT, Schmidt  HA, von Haeseler  A, Minh  BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:26874. DOIPubMedGoogle Scholar
  19. Hadfield  J, Megill  C, Bell  SM, Huddleston  J, Potter  B, Callender  C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34:41213. DOIPubMedGoogle Scholar
  20. Argimón  S, Abudahab  K, Goater  RJE, Fedosejev  A, Bhai  J, Glasner  C, et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom. 2016;2:e000093. DOIPubMedGoogle Scholar
  21. Yu  G, Smith  DK, Zhu  H, Guan  Y, Lam  TT. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:2836. DOIGoogle Scholar
  22. Mangioni  D, Fox  V, Chatenoud  L, Bolis  M, Bottino  N, Cariani  L, et al. Genomic Characterization of carbapenem-resistant Acinetobacter baumannii (CRAB) in mechanically ventilated COVID-19 patients and impact of infection control measures on reducing CRAB circulation during the second wave of the SARS-CoV-2 pandemic in Milan, Italy. Microbiol Spectr. 2023;11:e0020923. DOIPubMedGoogle Scholar
  23. Fitzpatrick  MA, Ozer  EA, Hauser  AR. Utility of whole-genome sequencing in characterizing Acinetobacter epidemiology and analyzing hospital outbreaks. J Clin Microbiol. 2016;54:593612. DOIPubMedGoogle Scholar
  24. Centers for Disease Control and Prevention. Implementing whole genome sequencing for foodborne disease surveillance. PulseNet. 2024 [cited 2024 Dec 4]. https://www.cdc.gov/pulsenet/php/wgs/wgs-vision.html
  25. Centers for Disease Control and Prevention. Tuberculosis whole-genome sequencing. 2024 [cited 2024 Dec 4]. https://www.cdc.gov/tb/php/genotyping/whole-genome-sequencing.html
  26. Tolar  B, Joseph  LA, Schroeder  MN, Stroika  S, Ribot  EM, Hise  KB, et al. An overview of PulseNet USA databases. Foodborne Pathog Dis. 2019;16:45762. DOIPubMedGoogle Scholar

Main Article

1These first authors contributed equally to this article.

Page created: March 06, 2025
Page updated: April 24, 2025
Page reviewed: April 24, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external