Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 3—March 2025
Dispatch

Haemophilus influenzae Type b Meningitis in Infants, New York, New York, USA, 2022–2023

Anne Ewing, Sydney Haldeman, Megan J. Job, Caitlin Otto, and Adam J. RatnerComments to Author 
Author affiliation: New York University Grossman School of Medicine, New York, New York, USA

Main Article

Figure

Genetic distance tree constructed to assess genetic relatedness among strains in study of Haemophilus influenzae type b (Hib) meningitis in infants, New York, New York, USA, 2022–2023. We constructed the tree using Mashtree (10) for Hib strains from the 2 New York patients (red asterisk) and reference sequences from GenBank (Appendix Table). Rings are color-coded to indicate MLST (inner ring) and CC (outer ring). Tree was rooted using the genome for NCTC 8468 (GenBank accession nos. GCA_90147285.1), a division II, sodC-containing Hib strain distantly related to other sequenced Hib isolates. Branch lengths represent mash distances. CC, clonal complex; MLST, multilocus sequence type; NA, not available.

Figure. Genetic distance tree constructed to assess genetic relatedness among strains in study of Haemophilus influenzae type b (Hib) meningitis in infants, New York, New York, USA, 2022–2023. We constructed the tree using Mashtree (10) for Hib strains from the 2 New York patients (red asterisk) and reference sequences from GenBank (Appendix Table). Rings are color-coded to indicate MLST (inner ring) and CC (outer ring). Tree was rooted using the genome for NCTC 8468 (GenBank accession nos. GCA_90147285.1), a division II, sodC-containing Hib strain distantly related to other sequenced Hib isolates. Branch lengths represent mash distances. CC, clonal complex; MLST, multilocus sequence type; NA, not available.

Main Article

References
  1. Briere  EC, Rubin  L, Moro  PL, Cohn  A, Clark  T, Messonnier  N; Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, CDC. Prevention and control of haemophilus influenzae type b disease: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep. 2014;63(RR-01):114.PubMedGoogle Scholar
  2. Gilsdorf  JR. Hib vaccines: their impact on Haemophilus influenzae type b disease. J Infect Dis. 2021;224(Suppl 2):S32130. DOIPubMedGoogle Scholar
  3. Myers  AL, Jackson  MA, Zhang  L, Swanson  DS, Gilsdorf  JR. Haemophilus influenzae type b invasive disease in Amish children, Missouri, USA, 2014. Emerg Infect Dis. 2017;23:1124. DOIPubMedGoogle Scholar
  4. Hanze Villavicencio  KL, Job  MJ, Burghard  AC, Taffet  A, Banda  FM, Vurayai  M, et al. Genomic analysis of group B Streptococcus carriage isolates from Botswana reveals distinct local epidemiology and identifies novel strains. Open Forum Infect Dis. 2023;10:ofad496. DOIPubMedGoogle Scholar
  5. Bouras  G, Judd  LM, Edwards  RA, Vreugde  S, Stinear  TP, Wick  RR. How low can you go? Short-read polishing of Oxford Nanopore bacterial genome assemblies. Microb Genom. 2024;10:001254. DOIPubMedGoogle Scholar
  6. Wick  RR, Judd  LM, Cerdeira  LT, Hawkey  J, Méric  G, Vezina  B, et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 2021;22:266. DOIPubMedGoogle Scholar
  7. Jolley  KA, Bray  JE, Maiden  MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. DOIPubMedGoogle Scholar
  8. Watts  SC, Holt  KE. hicap: In silico serotyping of the Haemophilus influenzae capsule locus. J Clin Microbiol. 2019;57:e0019019. DOIPubMedGoogle Scholar
  9. Argimón  S, Abudahab  K, Goater  RJE, Fedosejev  A, Bhai  J, Glasner  C, et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom. 2016;2:e000093. DOIPubMedGoogle Scholar
  10. Katz  LS, Griswold  T, Morrison  SS, Caravas  JA, Zhang  S, den Bakker  HC, et al. Mashtree: a rapid comparison of whole genome sequence files. J Open Source Softw. 2019;4:1762. DOIPubMedGoogle Scholar
  11. Adegbola  RA, Secka  O, Lahai  G, Lloyd-Evans  N, Njie  A, Usen  S, et al. Elimination of Haemophilus influenzae type b (Hib) disease from The Gambia after the introduction of routine immunisation with a Hib conjugate vaccine: a prospective study. Lancet. 2005;366:14450. DOIPubMedGoogle Scholar
  12. Blain  A, MacNeil  J, Wang  X, Bennett  N, Farley  MM, Harrison  LH, et al. Invasive Haemophilus influenzae disease in adults ≥65 years, United States, 2011. Open Forum Infect Dis. 2014;1:ofu044. DOIPubMedGoogle Scholar
  13. Centers for Disease Control and Prevention. ChildVaxView [cited 2024 Oct 01]. https://www.cdc.gov/childvaxview
  14. Coen  PG, Heath  PT, Barbour  ML, Garnett  GP. Mathematical models of Haemophilus influenzae type b. Epidemiol Infect. 1998;120:28195. DOIPubMedGoogle Scholar
  15. Nolen  LD, Topaz  N, Miernyk  K, Bressler  S, Massay  SC, Geist  M, et al. Evaluating a cluster and the overall trend of invasive Haemophilus influenzae serotype b in Alaska 2005-2019. Pediatr Infect Dis J. 2022;41:e1205. DOIPubMedGoogle Scholar

Main Article

Page created: February 04, 2025
Page updated: February 21, 2025
Page reviewed: February 21, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external