Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 3—March 2025
Synopsis

Genetic Diversity and Geographic Spread of Henipaviruses

Yakhouba Kane, Betty Nalikka, Alexander Tendu, Victor Omondi, Kathrina Mae Bienes, Abdou Padane, Veasna Duong, Nicolas Berthet, and Gary WongComments to Author 
Author affiliation: Shanghai Public Health Clinical Center, Fudan University, Shanghai, China (Y. Kane); Institut Pasteur, Phnom Penh, Cambodia (B. Nalikka, A. Tendu, V. Omondi, K.M. Bienes, V. Duong, G. Wong); Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation, Dakar, Senegal (A. Padane); Institut Pasteur, Paris, France (N. Berthet); Institut Pasteur, Vientiane, Laos (G. Wong)

Main Article

Figure 1

Trend in paramyxovirus sequences submitted to the National Center for Biotechnology Information Virus database (https://www.ncbi.nlm.nih.gov/labs/virus), 1980–2023. A) Sequence count by collection year, showing all complete and partial sequences compared with all henipaviruses. B) Virus genera and sequence counts by major host group from the VIRION database (32).

Figure 1. Trend in paramyxovirus sequences submitted to the National Center for Biotechnology Information Virus database (https://www.ncbi.nlm.nih.gov/labs/virus), 1980–2023. A) Sequence count by collection year, showing all complete and partial sequences compared with all henipaviruses. B) Virus genera and sequence counts by major host group from the VIRION database (32).

Main Article

References
  1. Wang  L, Harcourt  BH, Yu  M, Tamin  A, Rota  PA, Bellini  WJ, et al. Molecular biology of Hendra and Nipah viruses. Microbes Infect. 2001;3:27987. DOIPubMedGoogle Scholar
  2. Quarleri  J, Galvan  V, Delpino  MV. Henipaviruses: an expanding global public health concern? Geroscience. 2022;44:244759. DOIPubMedGoogle Scholar
  3. Aljofan  M. Hendra and Nipah infection: emerging paramyxoviruses. Virus Res. 2013;177:11926. DOIPubMedGoogle Scholar
  4. Gazal  S, Sharma  N, Gazal  S, Tikoo  M, Shikha  D, Badroo  GA, et al. Nipah and Hendra viruses: deadly zoonotic paramyxoviruses with the potential to cause the next pandemic. Pathogens. 2022;11:1419. DOIPubMedGoogle Scholar
  5. Breed  AC, Meers  J, Sendow  I, Bossart  KN, Barr  JA, Smith  I, et al. The distribution of henipaviruses in Southeast Asia and Australasia: is Wallace’s line a barrier to Nipah virus? PLoS One. 2013;8:e61316. DOIPubMedGoogle Scholar
  6. Chen  JM, Yu  M, Morrissy  C, Zhao  YG, Meehan  G, Sun  YX, et al. A comparative indirect ELISA for the detection of henipavirus antibodies based on a recombinant nucleocapsid protein expressed in Escherichia coli. J Virol Methods. 2006;136:2736. DOIPubMedGoogle Scholar
  7. Parashar  UD, Sunn  LM, Ong  F, Mounts  AW, Arif  MT, Ksiazek  TG, et al. Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998-1999 outbreak of severe encephalitis in Malaysia. J Infect Dis. 2000;181:17559. DOIPubMedGoogle Scholar
  8. Luby  SP, Gurley  ES, Hossain  MJ. Transmission of human infection with Nipah virus. Clin Infect Dis. 2009;49:17438. DOIPubMedGoogle Scholar
  9. Taylor  J, Thompson  K, Annand  EJ, Massey  PD, Bennett  J, Eden  JS, et al. Novel variant Hendra virus genotype 2 infection in a horse in the greater Newcastle region, New South Wales, Australia. One Health. 2022;15:100423. DOIPubMedGoogle Scholar
  10. Smith  C, Skelly  C, Kung  N, Roberts  B, Field  H. Flying-fox species density—a spatial risk factor for Hendra virus infection in horses in eastern Australia. PLoS One. 2014;9:e99965. DOIPubMedGoogle Scholar
  11. Edson  D, Peel  AJ, Huth  L, Mayer  DG, Vidgen  ME, McMichael  L, et al. Time of year, age class and body condition predict Hendra virus infection in Australian black flying foxes (Pteropus alecto). Epidemiol Infect. 2019;147:e240. DOIPubMedGoogle Scholar
  12. Ching  PKG, de los Reyes  VC, Sucaldito  MN, Tayag  E, Columna-Vingno  AB, Malbas  FF Jr, et al. Outbreak of henipavirus infection, Philippines, 2014. Emerg Infect Dis. 2015;21:32831. DOIPubMedGoogle Scholar
  13. Islam  A, Cannon  DL, Rahman  MZ, Khan  SU, Epstein  JH, Daszak  P, et al. Nipah virus exposure in domestic and peridomestic animals living in human outbreak sites, Bangladesh, 2013–2015. Emerg Infect Dis. 2023;29:3936. DOIPubMedGoogle Scholar
  14. Becker  DJ, Crowley  DE, Washburne  AD, Plowright  RK. Temporal and spatial limitations in global surveillance for bat filoviruses and henipaviruses. Biol Lett. 2019;15:20190423. DOIPubMedGoogle Scholar
  15. Li  Y, Wang  J, Hickey  AC, Zhang  Y, Li  Y, Wu  Y, et al. Antibodies to Nipah or Nipah-like viruses in bats, China. Emerg Infect Dis. 2008;14:19746. DOIPubMedGoogle Scholar
  16. Hayman  DTS, Suu-Ire  R, Breed  AC, McEachern  JA, Wang  L, Wood  JLN, et al. Evidence of henipavirus infection in West African fruit bats. PLoS One. 2008;3:e2739. DOIPubMedGoogle Scholar
  17. Madera  S, Kistler  A, Ranaivoson  HC, Ahyong  V, Andrianiaina  A, Andry  S, et al. Discovery and genomic characterization of a novel henipavirus, Angavokely virus, from fruit bats in Madagascar. J Virol. 2022;96:e0092122. DOIPubMedGoogle Scholar
  18. Hernández  LHA, da Paz  TYB, Silva  SPD, Silva  FSD, Barros  BCV, Nunes  BTD, et al. First genomic evidence of a henipa-like virus in Brazil. Viruses. 2022;14:2167. DOIPubMedGoogle Scholar
  19. Horemans  M, Van Bets  J, Joly Maes  T, Maes  P, Vanmechelen  B. Discovery and genome characterization of six new orthoparamyxoviruses in small Belgian mammals. Virus Evol. 2023;9:vead065. DOIPubMedGoogle Scholar
  20. Zhang  X-A, Li  H, Jiang  F-C, Zhu  F, Zhang  Y-F, Chen  J-J, et al. A zoonotic henipavirus in febrile patients in China. N Engl J Med. 2022;387:4702. DOIPubMedGoogle Scholar
  21. Lee  SH, Kim  K, Kim  J, No  JS, Park  K, Budhathoki  S, et al. Discovery and genetic characterization of novel paramyxoviruses related to the genus Henipavirus in Crocidura species in the Republic of Korea. Viruses. 2021;13:2020. DOIPubMedGoogle Scholar
  22. Chakraborty  S, Chandran  D, Mohapatra  RK, Islam  MA, Alagawany  M, Bhattacharya  M, et al. Langya virus, a newly identified Henipavirus in China - Zoonotic pathogen causing febrile illness in humans, and its health concerns: Current knowledge and counteracting strategies - Correspondence. Int J Surg. 2022;105:106882. DOIPubMedGoogle Scholar
  23. Weatherman  S, Feldmann  H, de Wit  E. Transmission of henipaviruses. Curr Opin Virol. 2018;28:711. DOIPubMedGoogle Scholar
  24. Wu  Z, Yang  L, Yang  F, Ren  X, Jiang  J, Dong  J, et al. Novel henipa-like virus, Mojiang paramyxovirus, in rats, China, 2012. Emerg Infect Dis. 2014;20:10646. DOIPubMedGoogle Scholar
  25. Hayman  DTS, Wang  LF, Barr  J, Baker  KS, Suu-Ire  R, Broder  CC, et al. Antibodies to henipavirus or henipa-like viruses in domestic pigs in Ghana, West Africa. PLoS One. 2011;6:e25256. DOIPubMedGoogle Scholar
  26. Baker  KS, Leggett  RM, Bexfield  NH, Alston  M, Daly  G, Todd  S, et al. Metagenomic study of the viruses of African straw-coloured fruit bats: detection of a chiropteran poxvirus and isolation of a novel adenovirus. Virology. 2013;441:95106. DOIPubMedGoogle Scholar
  27. Lu  M, Yao  Y, Zhang  X, Liu  H, Gao  G, Peng  Y, et al. Both chimpanzee adenovirus-vectored and DNA vaccines induced long-term immunity against Nipah virus infection. NPJ Vaccines. 2023;8:170. DOIPubMedGoogle Scholar
  28. Mire  CE, Geisbert  JB, Agans  KN, Feng  YR, Fenton  KA, Bossart  KN, et al. A recombinant Hendra virus G glycoprotein subunit vaccine protects nonhuman primates against Hendra virus challenge. J Virol. 2014;88:462431. DOIPubMedGoogle Scholar
  29. Huang  X, Li  Y, Li  R, Wang  S, Yang  L, Wang  S, et al. Nipah virus attachment glycoprotein ectodomain delivered by type 5 adenovirus vector elicits broad immune response against NiV and HeV. Front Cell Infect Microbiol. 2023;13:1180344. DOIPubMedGoogle Scholar
  30. Naveed  M, Mehmood  S, Aziz  T, Hammad Arif  M, Ali  U, Nouroz  F, et al. An mRNA-based reverse-vaccinology strategy to stimulate the immune response against Nipah virus in humans using fusion glycoproteins. Acta Biochim Pol. 2023;70:62331. DOIPubMedGoogle Scholar
  31. Broder  CC, Xu  K, Nikolov  DB, Zhu  Z, Dimitrov  DS, Middleton  D, et al. A treatment for and vaccine against the deadly Hendra and Nipah viruses. Antiviral Res. 2013;100:813. DOIPubMedGoogle Scholar
  32. Carlson  CJ, Gibb  RJ, Albery  GF, Brierley  L, Connor  RP, Dallas  TA, et al. The global virome in one Network (VIRION): an atlas of vertebrate-virus associations. MBio. 2022;13:e0298521. DOIPubMedGoogle Scholar
  33. Katoh  K, Standley  DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:77280. DOIPubMedGoogle Scholar
  34. Capella-Gutiérrez  S, Silla-Martínez  JM, Gabaldón  T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:19723. DOIPubMedGoogle Scholar
  35. Shen  W, Sipos  B, Zhao  L. SeqKit2: A Swiss army knife for sequence and alignment processing. iMeta. 2024;3:e191. DOIPubMedGoogle Scholar
  36. Minh  BQ, Schmidt  HA, Chernomor  O, Schrempf  D, Woodhams  MD, von Haeseler  A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:15304. DOIPubMedGoogle Scholar
  37. Tamura  K, Stecher  G, Kumar  S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38:30227. DOIPubMedGoogle Scholar
  38. Drummond  AJ, Suchard  MA, Xie  D, Rambaut  A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:196973. DOIPubMedGoogle Scholar
  39. Hasegawa  M, Kishino  H, Yano  T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:16074. DOIPubMedGoogle Scholar
  40. Rambaut  A, Drummond  AJ, Xie  D, Baele  G, Suchard  MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67:9014. DOIPubMedGoogle Scholar
  41. Kalyaanamoorthy  S, Minh  BQ, Wong  TKF, von Haeseler  A, Jermiin  LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:5879. DOIPubMedGoogle Scholar
  42. Crowley  D, Becker  D, Washburne  A, Plowright  R. Identifying suspect bat reservoirs of emerging infections. Vaccines (Basel). 2020;8:228. DOIPubMedGoogle Scholar
  43. Gu  SH, Nicolas  V, Lalis  A, Sathirapongsasuti  N, Yanagihara  R. Complete genome sequence and molecular phylogeny of a newfound hantavirus harbored by the Doucet’s musk shrew (Crocidura douceti) in Guinea. Infect Genet Evol. 2013;20:11823. DOIPubMedGoogle Scholar
  44. Mortlock  M, Geldenhuys  M, Dietrich  M, Epstein  JH, Weyer  J, Pawęska  JT, et al. Seasonal shedding patterns of diverse henipavirus-related paramyxoviruses in Egyptian rousette bats. Sci Rep. 2021;11:24262. DOIPubMedGoogle Scholar
  45. Isaacs  A, Low  YS, Macauslane  KLL, Seitanidou  J, Pegg  CLL, Cheung  STM, et al. Structure and antigenicity of divergent Henipavirus fusion glycoproteins. Nat Commun. 2023;14:3577. DOIPubMedGoogle Scholar

Main Article

Page created: February 04, 2025
Page updated: February 21, 2025
Page reviewed: February 21, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external