Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 3—March 2025
Research Letter

Fluoroquinolone Resistance in Drug-Resistant Tuberculosis, Kharkiv, Ukraine, 2019–2023

Olha Konstantynovska, Tetiana Synenko, Alla Honcharenko, Olha Volobuieva, Tetiana Liadova, Maja Reimann, Christoph Lange, and Dumitru ChesovComments to Author 
Author affiliation: Imperial College London, London, UK (O. Konstantynovska); Kharkiv Regional Phthisiopulmonological Center, Kharkiv, Ukraine (O. Konstantynovska, T. Synenko, A. Honcharenko, O. Volobuieva); V.N. Karazin Kharkiv National University, Kharkiv (O. Konstantynovska, O. Volobuieva, T. Liadova); Leibniz Lung Center, Borstel, Germany (M. Reimann, C. Lange, D. Chesov); German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany (M. Reimann, C. Lange, D. Chesov); University of Lübeck, Lübeck, Germany (C. Lange); Baylor College of Medicine and Texas Children's Hospital, Global Tuberculosis Program, Houston, Texas, USA (C. Lange); Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova (D. Chesov)

Main Article

Table

Resistance to second-line drugs in a study of fluoroquinolone resistance in drug-resistant TB, Kharkiv, Ukraine, 2019–2023*

Category
2014
2019
2020
2021
2022
2023
Kendall τ
No. patients with MDR/RR TB 169 333 231 243 155 262 0.07
New TB patients with MDR/RR TB, no. (%)
104 (61.5)
256 (76.9)
178 (77.1)
173 (71.2)
125 (80.6)
187 (71.4)
0.07†
Group A drugs, % resistant
Moxifloxacin 14.9 NT 15.0 10.6 20.8 20.9 0.6
Levofloxacin 10.0 23.1 27.2 26.9 31.2 28.2 0.73
Bedaquiline NT NT 0 0 0.7 0.4 0.55
Linezolid
2.9
0.3
0
0.5
2.7
0.4
−0.07
Group B drugs, % resistant
Clofazimine NT 0 0 0 0 0.4 0.63
Cycloserine
5.8
0
NT
NT
NT
NT
NA
Group C drugs, % resistant
Ethambutol 66.3 75.4 60.1 37.9 49.4 54.4 −0.47
Delamanid NT 0 1.8 0.9 0.7 1.7 0.2
Pyrazinamide 69.6 54.9 54.9 54.3 55.3 58.6 0
Imipenem/meropenem NT NT NT NT NT NT NA
Amikacin 23.4 12.4 13.2 18.5 20.4 18.0 0.07
Streptomycin 95.9 75.3 78.4 NT NT NT −0.33
Ethionamide 33.6 32.7 26.1 24.4 27.3 NT −0.6
Para-aminosalicylic acid 3.1 NT NT NT NT NT NA

*Results referred to phenotypic drug susceptibility testing, performed by using the BACTEC MGIT960 culture system (Becton Dickinson, https://www.bd.com), applying World Health Organization–recommended critical concentrations. Drug groups are from the World Health Organization (3). MDR/RR, multidrug resistant/rifampin resistant; NA, not applicable; NT, not tested; TB, tuberculosis. †The Kendal τ coeficient for the trend for the percentage of new TB patients over the study period 2014 and 2019–2023 was 0.33.

Main Article

References
  1. World Health Organization. WHO bacterial priority pathogens list, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: The Organization; 2024.
  2. World Health Organization. Global tuberculosis report 2024. Geneva: The Organization; 2024.
  3. World Health Organization. Key updates to the treatment of drug-resistant tuberculosis: rapid communication. Geneva: The Organization; 2024.
  4. Chesov  E, Chesov  D, Maurer  FP, Andres  S, Utpatel  C, Barilar  I, et al. Emergence of bedaquiline resistance in a high tuberculosis burden country. Eur Respir J. 2022;59:2100621. DOIPubMedGoogle Scholar
  5. Butov  D, Lange  C, Heyckendorf  J, Kalmykova  I, Butova  T, Borovok  N, et al. Multidrug-resistant tuberculosis in the Kharkiv Region, Ukraine. Int J Tuberc Lung Dis. 2020;24:48591. DOIPubMedGoogle Scholar
  6. Pedersen  OS, Holmgaard  FB, Mikkelsen  MKD, Lange  C, Sotgiu  G, Lillebaek  T, et al. Global treatment outcomes of extensively drug-resistant tuberculosis in adults: A systematic review and meta-analysis. J Infect. 2023;87:17789. DOIPubMedGoogle Scholar
  7. Liu  CH, Yang  N, Wang  Q, Hu  YL, Li  L, Zhang  GY, et al. Risk factors associated with fluoroquinolone-resistant tuberculosis in a Beijing tuberculosis referral hospital. Respirology. 2011;16:91825. DOIPubMedGoogle Scholar
  8. Lee  JY, Lee  HJ, Kim  YK, Yu  S, Jung  J, Chong  YP, et al. Impact of fluoroquinolone exposure prior to tuberculosis diagnosis on clinical outcomes in immunocompromised patients. Antimicrob Agents Chemother. 2016;60:400512. DOIPubMedGoogle Scholar
  9. Chen  TC, Lu  PL, Lin  CY, Lin  WR, Chen  YH. Fluoroquinolones are associated with delayed treatment and resistance in tuberculosis: a systematic review and meta-analysis. Int J Infect Dis. 2011;15:e2116. DOIPubMedGoogle Scholar
  10. Versporten  A, Bolokhovets  G, Ghazaryan  L, Abilova  V, Pyshnik  G, Spasojevic  T, et al.; WHO/Europe-ESAC Project Group. Antibiotic use in eastern Europe: a cross-national database study in coordination with the WHO Regional Office for Europe. Lancet Infect Dis. 2014;14:3817. DOIPubMedGoogle Scholar

Main Article

Page created: December 10, 2024
Page updated: February 21, 2025
Page reviewed: February 21, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external