Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 7—July 2025

Research

Emergence of Distinct Salmonella enterica Serovar Enteritidis Lineage since 2020, South Korea

Eunkyung Shin1, Tae-Min La1, Jaeil Yoo, Junyoung Kim2Comments to Author , and Ji-Yeon Hyeon2Comments to Author 
Author affiliation: Korea Centers for Diseases Control and Prevention Agency, Cheongju, South Korea (E. Shin, J. Yoo, J. Kim); Konkuk University College of Veterinary Medicine, Seoul, South Korea (T.-M. La, J.-Y. Hyeon)

Main Article

Figure 2

Phylogenetic analysis of distinct Salmonella enterica serovar Enteritidis lineage since 2020, South Korea. Maximum-likelihood phylogenetic tree was constructed for whole-genome single-nucleotide polymorphisms of Salmonella Enteritidis from South Korea (n = 223) and isolates sequenced in this study (n = 38). Red text indicates isolates from this study. Innermost ring indicates clades separated by using FastBAPS (20), followed by sources of isolates. Five outer rings indicate the presence of different prophages; red boxes indicate the presence of prophages with a total count of >30. Isolation year is indicated at the end of each isolate number. Scale bar indicates number of single-nucleotide polymorphisms per site.

Figure 2. Phylogenetic analysis of distinct Salmonella enterica serovar Enteritidis lineage since 2020, South Korea. Maximum-likelihood phylogenetic tree was constructed for whole-genome single-nucleotide polymorphisms of Salmonella Enteritidis from South Korea (n = 223) and isolates sequenced in this study (n = 38). Red text indicates isolates from this study. Innermost ring indicates clades separated by using FastBAPS (20), followed by sources of isolates. Five outer rings indicate the presence of different prophages; red boxes indicate the presence of prophages with a total count of >30. Isolation year is indicated at the end of each isolate number. Scale bar indicates number of single-nucleotide polymorphisms per site.

Main Article

References
  1. Ferrari  RG, Rosario  DKA, Cunha-Neto  A, Mano  SB, Figueiredo  EES, Conte-Junior  CA. Worldwide epidemiology of Salmonella serovars in animal-based foods: a meta-analysis. Appl Environ Microbiol. 2019;85:e0059119. DOIPubMedGoogle Scholar
  2. Jeong  HJ, Shin  E, Park  J, Han  J, Kim  J, Yoo  J. Trends in serotype distribution of Salmonella enterica isolated from diarrheal patients in Korea, 2019 to 2021. Public Health Wkly Rep. 2022;15:261531.
  3. Hwang  MJ, Park  SY, Kim  H, Yang  SJ, Yang  S, Yang  JS. Waterborne and foodborne disease outbreaks in the Republic of Korea, 2023. Public Health Wkly Rep. 2025;18:1732.
  4. Eun  JS, Han  J, Lim  JH, Shin  E, Kim  J, Ko  DJ, et al. Salmonellosis outbreaks linked to eggs at 2 gimbap restaurants in Korea. Epidemiol Health. 2024;46:e2024036. DOIPubMedGoogle Scholar
  5. European Centre for Disease Prevention and Control, European Food Safety Authority. Multi‐country outbreak of Salmonella Enteritidis sequence type (ST)11 infections linked to eggs and egg products—8 February 2022. EFSA Support Publ. 2022;19:7180E.
  6. Benson  HE, Reeve  L, Findlater  L, Vusirikala  A, Pietzsch  M, Olufon  O, et al.; Incident Management Team. Local Salmonella Enteritidis restaurant outbreak investigation in England provides further evidence for eggs as source in widespread international cluster, March to April 2023. Euro Surveill. 2023;28:2300309. DOIPubMedGoogle Scholar
  7. Zhou  Z, Alikhan  NF, Mohamed  K, Fan  Y, Achtman  M; Agama Study Group. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020;30:13852. DOIPubMedGoogle Scholar
  8. Zhou  Z, Charlesworth  J, Achtman  M. HierCC: a multi-level clustering scheme for population assignments based on core genome MLST. Bioinformatics. 2021;37:36456. DOIPubMedGoogle Scholar
  9. La  TM, Kim  T, Lee  HJ, Lee  JB, Park  SY, Choi  IS, et al. Whole-genome analysis of multidrug-resistant Salmonella Enteritidis strains isolated from poultry sources in Korea. Pathogens. 2021;10:1615. DOIPubMedGoogle Scholar
  10. Hyeon  JY, Li  S, Mann  DA, Zhang  S, Kim  KJ, Lee  DH, et al. Whole-genome sequencing analysis of Salmonella enterica serotype Enteritidis isolated from poultry sources in South Korea, 2010–2017. Pathogens. 2021;10:45. DOIPubMedGoogle Scholar
  11. Jang  HJ, Ha  YK, Yu  SN, Kim  SY, Um  J, Ha  GJ, et al. Molecular epidemiological analysis of food poisoning caused by Salmonella enterica serotype Enteritidis in Gyeongnam Province of Korea. J Life Sci. 2023;33:5663.
  12. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  13. Zankari  E, Hasman  H, Cosentino  S, Vestergaard  M, Rasmussen  S, Lund  O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:26404. DOIPubMedGoogle Scholar
  14. Liu  B, Zheng  D, Zhou  S, Chen  L, Yang  J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022;50(D1):D9127. DOIPubMedGoogle Scholar
  15. Wishart  DS, Han  S, Saha  S, Oler  E, Peters  H, Grant  JR, et al. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023;51(W1):W44350. DOIPubMedGoogle Scholar
  16. Li  S, He  Y, Mann  DA, Deng  X. Global spread of Salmonella Enteritidis via centralized sourcing and international trade of poultry breeding stocks. Nat Commun. 2021;12:5109. DOIPubMedGoogle Scholar
  17. Marçais  G, Delcher  AL, Phillippy  AM, Coston  R, Salzberg  SL, Zimin  A. MUMmer4: A fast and versatile genome alignment system. PLOS Comput Biol. 2018;14:e1005944. DOIPubMedGoogle Scholar
  18. Croucher  NJ, Page  AJ, Connor  TR, Delaney  AJ, Keane  JA, Bentley  SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15. DOIPubMedGoogle Scholar
  19. Nguyen  LT, Schmidt  HA, von Haeseler  A, Minh  BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:26874. DOIPubMedGoogle Scholar
  20. Tonkin-Hill  G, Lees  JA, Bentley  SD, Frost  SDW, Corander  J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res. 2019;47:553949. DOIPubMedGoogle Scholar
  21. Katz  LS, Griswold  T, Morrison  SS, Caravas  JA, Zhang  S, den Bakker  HC, et al. Mashtree: a rapid comparison of whole genome sequence files. J Open Source Softw. 2019;4:1762. DOIPubMedGoogle Scholar
  22. Rambaut  A, Lam  TT, Max Carvalho  L, Pybus  OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2:vew007. DOIPubMedGoogle Scholar
  23. Suchard  MA, Lemey  P, Baele  G, Ayres  DL, Drummond  AJ, Rambaut  A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. DOIPubMedGoogle Scholar
  24. Darriba  D, Posada  D, Kozlov  AM, Stamatakis  A, Morel  B, Flouri  T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37:2914. DOIPubMedGoogle Scholar
  25. Xie  W, Lewis  PO, Fan  Y, Kuo  L, Chen  MH. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol. 2011;60:15060. DOIPubMedGoogle Scholar
  26. Bielejec  F, Baele  G, Vrancken  B, Suchard  MA, Rambaut  A, Lemey  P. SpreaD3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol Biol Evol. 2016;33:21679. DOIPubMedGoogle Scholar
  27. Hajra  D, Nair  AV, Chakravortty  D. Decoding the invasive nature of a tropical pathogen of concern: The invasive non-Typhoidal Salmonella strains causing host-restricted extraintestinal infections worldwide. Microbiol Res. 2023;277:127488. DOIPubMedGoogle Scholar
  28. Food and Agriculture Organization of the United Nations. Food and agriculture data, 2025 [cited 2025 May 5]. https://www.fao.org/faostat
  29. European Centre for Disease Prevention and Control. European Food Safety Authority. Multi‐country outbreak of Salmonella Enteritidis sequence type (ST)11 infections linked to poultry products in the EU/EEA and the United Kingdom. EFSA Support Publ. 2021;18:6486E.

Main Article

1These first authors contributed equally to this article.

2These senior authors contributed equally to this article.

Page created: May 16, 2025
Page updated: June 16, 2025
Page reviewed: June 16, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external