Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 4, Number 2—June 1998
Commentary

Vector-borne Disease Surveillance and Natural Disasters

Article Metrics
43
citations of this article
EID Journal Metrics on Scopus
Author affiliations: Centers for Disease Control and Prevention, Fort Collins, Colorado 80522, USA;

Cite This Article

Natural disasters, such as hurricanes and floods, are frequently followed by a proliferation of mosquitoes and requests from residents and government agencies for widespread application of insecticides. However, nuisance mosquito species, which often require emergency control measures, rarely present a threat to public health (1). Natural disasters in the continental United States have rarely been accompanied by epidemics of mosquito-transmitted disease (2). Nevertheless, public health disaster response policies should include a provision for monitoring increases in the prevalence of potentially infectious mosquitoes and the risk for arboviral disease in the affected areas.

Four major arboviruses (viruses transmitted by mosquitoes or other arthropods) are of human and veterinary public health importance in the United States: eastern equine encephalomyelitis (EEE), western equine encephalomyelitis (WEE), St. Louis encephalitis (SLE), and LaCrosse (LAC) encephalitis. Because of its unique ecology, LAC virus does not occur in an epidemic form and would not increase as a result of floods or hurricanes. The three viruses of primary concern (EEE, SLE, WEE) overlap in their distribution, but each has a distinct ecology, involving different mosquito species and avian amplifier hosts (3)1. Despite these differences, populations of primary or secondary vector species of each virus may increase significantly in response to heavy rainfall or flooding. Therefore, under certain circumstances, disasters might produce increases in disease risk.

Several major floods and hurricanes have been evaluated since 1975 (Table). The major geographic and ecologic regions of the United States, some of which contain each of the common epidemic arboviruses (EEE, SLE, WEE), are included. With the exception of the Red River flood of 1975, disasters have not increased transmission of arboviruses to humans or domestic animals. The single case of EEE associated with Hurricane Fran in 1996 may have been acquired before the hurricane. Similarly, cases of EEE and WEE in domestic animals, especially horses and emus, do not appear to increase after floods or hurricanes (SLE does not cause disease in most domestic animals).

Natural disasters in the continental United States since 1975<sup>a</sup>
Year State/ region Event Surveillance done? Activity
detected? Human
cases Veterinary cases
1975 N.D., Minn. Red River flood Yes WEEb in mosquitoes 55 WEE, 12 SLEc 281 WEE (estimated)
1989 S.E. United States Hurricane Hugo Yes EEEd in mosquitoes None (No data)
1992 Fla., La. Hurricane Andrew Yes None None None
1993 Ariz. Gila River flood Yes SLE, WEE
in mosquitoes None None
1993 Mid-western,
United States, Mississippi, Missouri river flooding Yes
(7 states) WEE - S.D., SLE - Il. None None
1994 Ala., Fla., Ga Tropical storm Alberto Yes EEE-Al, Fl None EEE in horses, emus - Al, Fl
1995 Calif. Winter & spring floods Yes WEE, SLE in sentinel flocks None WEE
1996 Calif. Winter flood Yes WEE, SLE in chickens, WEE in mosquitoes None None
1996 Oregon, Wash. Winter flood No No None None
1996 N.C. Hurricane Fran Yes EEE in mosquitoes 1 EEE EEE in horses
1997 Colo. Summer floods Yes WEE in chickens None None
1997 N.D., Minn. Red River flood Sporadic None reported None None

aSurveillance data collected by the Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention (CDC). State and local health departments assisted during emergency response. Federal Emergency Management Agency and Emergency Response Coordination Group, National Centers for Environmental Health, CDC, provided field support.
b Western equine encephalitis
c St. Louis encephalitis
d Eastern equine encephalitis

Despite the fact that epidemics of arboviral encephalitis have rarely followed hurricane- or flood-related disasters in the United States, these events can increase the risk for human arboviral disease in certain circumstances. In nine of the ten events in which surveillance has been conducted (Table), arbovirus activity was detected in surveillance programs initiated after the event, which indicates the existence of an enzootic transmission cycle in the area. Under these circumstances, increases in vector mosquito population density can enhance transmission and increase the prevalence of potentially infectious mosquitoes, which in turn increases the risk for human disease, particularly when coupled with expanded human exposure to mosquitoes after a disaster (e.g., residents and recovery workers removing debris, restoring housing, and living in substandard conditions).

Public health policies dealing with flood-related disasters must include provisions addressing mosquito-transmitted disease. Preferably, data from an existing arbovirus surveillance program can be evaluated to determine the status of transmission cycles before the event and determine the risk for disease. For example, California's long-term surveillance has established a baseline to which post-disaster virus activity can be compared (4-7). After the 1994-95 winter flood in California, Moore (unpub. data) used those data to determine that WEE seroconversion rates in sentinel chickens did not differ from rates in previous years. However, in most hurricane- and flood-prone areas, routine surveillance is not conducted.

In the absence of an existing program, arbovirus surveillance should be initiated as part of the disaster response plan. At the very least, these programs should determine population indexes of key vector species, virus infection rates in those species, and seroprevalence in sentinel or wild animals. Additional useful information includes prevailing weather conditions, time of year, human exposure, human population at risk, historical patterns of arboviral disease, and the potential for imported diseases (3).

Top

References

  1. Centers for Disease Control and Prevention. Emergency mosquito control associated with Hurricane Andrew-Florida and Louisiana, 1992. MMWR. 1993;42:2402.PubMedGoogle Scholar
  2. Centers for Disease Control and Prevention. Rapid assessment of vectorborne diseases during the Midwest flood-United States, 1993. MMWR. 1994;43:4813.PubMedGoogle Scholar
  3. Moore  CG, McLean  RG, Mitchell  CJ, Nasci  RS, Tsai  TF, Calisher  CH, Guidelines for arbovirus surveillance programs in the United States. Fort Collins, CO: U.S. Dept. of Health and Human Services, Centers for Disease Control and Prevention; 1993.
  4. Emmons  RW, Ascher  MS, Dondero  DV, Enge  B, Milby  MM, Hui  LT, Surveillance for arthropod-borne viral activity and disease in California during 1991. In: Proceedings of the California Mosquito and Vector Control Association; 1992.
  5. Emmons  RW, Ascher  MS, Dondero  DV, Enge  B, Reisen  WK, Milby  MM, Surveillance for arthropod-borne viral activity and disease in California during 1992. Proceedings of the California Mosquito and Vector Control Association; 1993.
  6. Emmons  RW, Ascher  MS, Dondero  DV, Enge  B, Reisen  WK, Milby  MM, Surveillance for arthropod-borne viral activity and disease in California during 1993. Proceedings of the California Mosquito and Vector Control Association; 1994.
  7. Reeves  WC. Epidemiology and control of mosquito-borne arboviruses in California, 1943-1987. Sacramento, CA: California Mosquito and Vector Control Association; 1990.

Top

Cite This Article

DOI: 10.3201/eid0402.980227

1Additional information may be obtained at http://www.cdc.gov/ncidod/dvbid/arbor/arboinfo.htm

Table of Contents – Volume 4, Number 2—June 1998

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Page created: July 21, 2010
Page updated: July 21, 2010
Page reviewed: July 21, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external