Volume 5, Number 3—June 1999
Research
Tuberculosis in the Caribbean: Using Spacer Oligonucleotide Typing to Understand Strain Origin and Transmission
Figure 3

Figure 3. A dendrogram represents spoligotyping results of 95 Mycobacterium tuberculosis isolates from Guadeloupe (shared patterns are shown by bold characters). From top to bottom; type 53, ubiquitous; type 44, described by Goguet et al. (two cases) (18); type 54, which does not appear, is found only in isolate 94142, a pattern also found in French Guiana; type 37, which also does not appear, described by Kamerbeek et al. (three cases) (11); type 50, ubiquitous; type 63, specific; type 61, which does not appear is found only in isolate 96131, a pattern also found in Barbados and French Guiana; type 51, described by Goguet et al. (one case) (18); isolate 96095, a M. bovis BCG clinical isolate; types 12 to 14, specific types; type 5, which does not appear, is found only in isolate 95068, a pattern also found in Martinique; type 31, which does not appear, is found only in isolate 94112, a pattern also found in French Guiana and already reported by Goguet et al. (two cases) (18); type 46, which does not appear, is found only in isolate 95087, a pattern also found in Martinique and was already reported (18); type 17, specific; type 30, specific; types 45 and 15, which do not appear, are found only for isolates 96129 and 94127, respectively, and share patterns with isolates in Martinique and Surinam; type 29, specific; type 2, previously reported by Goguet et al. (one case) (18); type 3, also found in Surinam, has been described by Kamerbeek et al. (one case) (11); type 1, which does not appear, is found only in 95076, a pattern also found in Surinam, and described (20) as the Beijing type.
References
- Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–44. DOIPubMedGoogle Scholar
- van Helden PD. Bacterial genetics and strain variation. Novartis Found Symp. 1998;217:178–94. DOIPubMedGoogle Scholar
- Small PM, van Embden JDA. Molecular epidemiology of tuberculosis. In: Bloom BR, editor. Tuberculosis: pathogenesis, protection and control. Washington: American Society for Microbiology; 1994, p. 569-82.
- Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A. 1997;97:9869–74. DOIGoogle Scholar
- van Embden JDA, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31:406–9.PubMedGoogle Scholar
- Sola C, Horgen L, Goh KS, Rastogi N. Molecular fingerprinting of Mycobacterium tuberculosis on a Caribbean island with IS6110 and DRr probes. J Clin Microbiol. 1997;35:843–6.PubMedGoogle Scholar
- Sola C, Horgen L, Maïsetti J, Devallois A, Goh KS, Rastogi N. Spoligotyping followed by double-repetitive element PCR as rapid alternative to IS6110-fingerprinting for epidemiological studies of tuberculosis. J Clin Microbiol. 1998;36:1122–4.PubMedGoogle Scholar
- Stead WM, Eisenach KD, Cave MD, Beggs ML, Templeton GL, Thoen CO, When did Mycobacterium tuberculosis infection first occur in the New World? Am J Respir Crit Care Med. 1995;151:1267–8.PubMedGoogle Scholar
- Sola C, Horgen L, Devallois A, Rastogi N. Combined numerical analysis based on the molecular description of Mycobacterium tuberculosis by four-repetitive sequence-based DNA typing sequence. Res Microbiol. 1998;149:349–60. DOIPubMedGoogle Scholar
- Rastogi N, Schlegel L, Pfaff F, Jeanne I, Magnien C, Lajoinie G, La tuberculose dans la Région Antilles-Guyane: situation epidemiologique de 1994 à 1996. Bulletin Epidémiologique Hebdomadaire. 1998;11/98:45–7.
- Kamerbeek J, Schouls L, van Agterveld M, van Soolingen D, Kolk A, Kuijper S, Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.PubMedGoogle Scholar
- Hermans PWM, van Soolingen D, Bik EM, de Haas PEW, Dale JW, van Embden JDA. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun. 1991;59:2695–705.PubMedGoogle Scholar
- Sneath PHA, Sokal RR. Numerical taxonomy: the principles and practices of classification. San Francisco (CA): W.H. Freeman & Co.; 1973.
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.PubMedGoogle Scholar
- Friedman CR, Stoeckle MY, Johnson WD, Riley LW. Double-repetitive-element PCR method for subtyping Mycobacterium tuberculosis clinical isolates. J Clin Microbiol. 1995;33:1383–4.PubMedGoogle Scholar
- Poulet S, Cole ST. Characterization of the highly abundant polymorphic GC-rich repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch Microbiol. 1995;163:87–95. DOIPubMedGoogle Scholar
- Goyal M, Saunders NA, van Embden JDA, Young DB, Shaw RJ. Differentiation of Mycobacterium tuberculosis isolates by spoligotyping and IS6110 restriction fragment length polymorphism. J Clin Microbiol. 1997;35:647–51.PubMedGoogle Scholar
- Goguet de la Salmonière Y, Li HM, Torrea G, Bunschoten A, van Embden JDA, Gicquel B. Evaluation of spoligotyping in a study of the transmission of Mycobacterium tuberculosis. J Clin Microbiol. 1997;35:2210–4.PubMedGoogle Scholar
- Douglas JT, Qian L, Montoya JC, Sreevatsan S, Musser JT, van Soolingen D, Detection of a novel family of tuberculosis isolates in the Philippines. 97th general meeting of the American Society for Microbiology, Washington: American Society for Microbiology Press; 1997. p. 572.
- van Soolingen D, Qian L, de Haas PEW, Douglas JT, Traore H, Portaels F, Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol. 1995;33:3234–8.PubMedGoogle Scholar
- Yang Z, Barnes PF, Chaves F, Eidenach KD, Weis SE, Bates JH, Diversity of DNA fingerprints of Mycobacterium tuberculosis in the United States. J Clin Microbiol. 1998;36:1003–7.PubMedGoogle Scholar
- Prodinger WM, Pavlic M, Pedroza JC, Allenberger FJ. Tracing of a cluster of tuberculosis infections [abstract U-56]. 98th General Meeting of the American Society for Microbiology, Washington: American Society for Microbiology Press; 1998. p. 504.
- Jasmer RM, Ponce de Leon A, Hopewell PC, Alarcon RG, Moss AR, Paz A, Tuberculosis in Mexican-born persons in San Francisco: reactivation, acquired infection and transmission. Int J Tuberc Lung Dis. 1997;1:536–41.PubMedGoogle Scholar
- Groenen PMA, Bunschoten AE, van Soolingen D, van Embden JDA. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol. 1993;10:1057–65. DOIPubMedGoogle Scholar
- van Soolingen D, de Haas PEW, Hermans PWM, Groenen PMA, van Embden JDA. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol. 1993;31:1987–95.PubMedGoogle Scholar
- Bifani PJ, Plykaitis BB, Kapur V, Stockbauer K, Pan X, Lutfey ML, Origin and interstate spread of a New York City multidrug-resistant Mycobacterium clone family. JAMA. 1996;275:452–7. DOIPubMedGoogle Scholar
- Meyer A. In: Harvey PH, Leigh Brown AJ, Maynard Smith J, editors. New uses for new phylogenies. London: Oxford University Press; 1996. p. 322-40.