Volume 6, Number 5—October 2000
Research
Toxin Gene Expression by Shiga Toxin-Producing Escherichia coli: the Role of Antibiotics and the Bacterial SOS Response
Table
Induction of stx2 expression by antibiotics under different incubation conditionsa
Target of action | Incubation conditionsb | ||||||
---|---|---|---|---|---|---|---|
Agent (disc content mg/L) | mO2/37 | O2/37 | mO2/42 | AnO2/37 | O2/30 | O2/42 | Zone patternc |
Background | + | - | - | - | + | - | NA |
DNA Gyrase | |||||||
Quinolonesd | + | + | + | + | + | +/- | >MIC |
Novobiocin (30) | + | - | - | - | + | - | >MIC |
Folate metabolism | |||||||
Trimethoprim (5) | + | + | - | + | + | - | >MIC |
Smx (25) | + | + | - | + | - | - | >MIC |
DNA | |||||||
Metronidazole (50) | - | - | - | - | - | - | NA |
Furazolidone (50) | + | + | - | - | + | - | =MIC |
Cell envelope | |||||||
Cephalexin (30) | + | + | - | - | +/- | - | =MIC |
Amoxycillin (25) | + | + | - | - | - | - | =MIC |
Amoxy/Clav (20/10) | +/- | - | - | - | - | - | =MIC |
Ampicillin (10) | + | + | - | - | - | - | =MIC |
Pip/Taz (10/75) | + | + | - | - | - | - | =MIC |
Imipenem (10) | - | - | - | - | - | - | NA |
Aztreonam (30) | + | + | - | - | - | - | =MIC |
Cefuroxime (5) | + | + | - | - | - | - | =MIC |
Ceftazidime (30) | + | + | - | - | - | - | =MIC |
Cefotaxime (30) | + | + | - | - | - | - | =MIC |
Fosfomycin (200) | - | - | - | - | - | - | NA |
Polymyxin B (300 IU) | +/- | - | - | - | + | - | =MIC |
Translation | |||||||
Gentamicin (10) | - | - | - | - | - | - | NA |
Chloramphenicol (30) | - | - | - | - | - | - | NA |
Doxycycline (30) | - | - | - | - | - | - | NA |
Erythromycin (15) | - | - | - | - | - | - | NA |
Transcription | |||||||
Rifampin (25) | - | - | +/- | - | - | - | NA |
aStx2 induction effects (zones of blue coloration, Figure 1): -, not detected, +/-, borderline induction, +, definite induction, >MIC, zone of induction within the zone of growth inhibition; =MIC, induction on the edge of the zone of inhibition; NA, not applicable; Amoxy/Clav, amoxycillin/clavulanic acid; Pip/Taz, piperacillin/tazobactam; Smx, sulphamethoxazole.
bO2, aerobic; mO2 microaerobic; AO2, anaerobic/incubation temperature °C.
cNote: The patterns indicated were detected in three separate experiments and recorded by two independent observers.
dThe quinolones tested are listed in the Materials and Methods section.
References
- Karmali MA, Petric M, Lim C, Fleming PC, Steele BT. Escherichia coli cytotoxin, haemolytic-uraemic syndrome, and haemorrhagic colitis. Lancet. 1983;2:1299–300. DOIPubMedGoogle Scholar
- Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308:681–5. DOIPubMedGoogle Scholar
- Ostroff SM, Tarr PI, Neill MA, Lewis JH, Hargrett-Bean N, Kobayashi JM. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J Infect Dis. 1989;160:994–8.PubMedGoogle Scholar
- Carter AO, Borczyk AA, Carlson JA, Harvey B, Hockin JC, Karmali MA, A severe outbreak of Escherichia coli O157:H7-associated hemorrhagic colitis in a nursing home. N Engl J Med. 1987;317:1496–500. DOIPubMedGoogle Scholar
- Proulx F, Seidman E. Is antibiotic therapy of mice and humans useful in Escherichia coli O157:H7 enteritis? Eur J Clin Microbiol Infect Dis. 1999;18:533–4. DOIPubMedGoogle Scholar
- Walker GC. The SOS response of Escherichia coli. In: F.C. Neidhardt, editor. Escherichia coli and Salmonella. Washington: ASM Press; 1996. p. 1400-16.
- Neely MN, Friedman DI. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol. 1998;28:1255–67. DOIPubMedGoogle Scholar
- Kimmitt PT, Harwood CR, Barer MR. Induction of type 2 shiga toxin synthesis in Escherichia coli O157 by 4-quinolones. Lancet. 1999;353:1588–9. DOIPubMedGoogle Scholar
- Matsushiro A, Sato K, Miyamoto H, Yamamura T, Honda T. Induction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacin. J Bacteriol. 1999;181:2257–60.PubMedGoogle Scholar
- Plunkett G, Rose DJ, Durfee TJ, Blattner FR. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J Bacteriol. 1999;181:1767–78.PubMedGoogle Scholar
- Miller JH. Experiments in molecular genetics. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory; 1972.
- Karch H, Strockbine NA, O'Brien AD. Growth of Escherichia coli in the presence of trimethoprim-sulfamethoxazole facilitates detection of Shiga-like toxin producing strains by colony blot assay. FEMS Microbiol Lett. 1986;35:141–5. DOIGoogle Scholar
- Yoh M, Frimpong EK, Honda T. Effect of antimicrobial agents, especially fosfomycin, on the production and release of Vero toxin by enterohaemorrhagic Escherichia coli O157:H7. FEMS Immunol Med Microbiol. 1997;19:57–64. DOIPubMedGoogle Scholar
- Walterspiel JN, Ashkenazi S, Morrow AL, Cleary TG. Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin-I. Infection. 1992;20:25–9. DOIPubMedGoogle Scholar
- Grif K, Dierich MP, Karch H, Allerberger F. Strain-specific differences in the amount of Shiga toxin released from enterohaemorrhagic Escherichia coli O157 following exposure to subinhibitory concentrations of antimicrobial agents. Eur J Clin Microbiol Infect Dis. 1998;17:761–6. DOIPubMedGoogle Scholar
- Drlica K, Zhao XL. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev. 1997;61:377–94.PubMedGoogle Scholar
- Lewin CS, Amyes SG. The role of the SOS response in bacteria exposed to zidovudine or trimethoprim. J Med Microbiol. 1991;34:329–32. DOIPubMedGoogle Scholar
- Quillardet P, Hofnung M. The SOS chromotest: a review. Mutat Res. 1993;297:235–79.PubMedGoogle Scholar
- Yee AJ, De Grandis S, Gyles CL. Mitomycin-induced synthesis of a Shiga-like toxin from enteropathogenic Escherichia coli H.I.8. Infect Immun. 1993;61:4510–3.PubMedGoogle Scholar
- Pavia AT, Nichols CR, Green DP, Tauxe RV, Mottice S, Greene KD, Hemolytic-uremic syndrome during an outbreak of Escherichia coli O157:H7 infections in institutions for mentally retarded persons: clinical and epidemiologic observations. J Pediatr. 1990;116:544–51. DOIPubMedGoogle Scholar
- Dundas S, Todd WTA. Clinical presentation, complications and treatment of infection with verocytotoxin producing Escherichia coli. Challenges for the clinician. J Appl Microbiol. 2000;88:24S–30S.PubMedGoogle Scholar
- Wong CS, Jelacic S, Habeeb RL, Watkins SL, Tarr PI. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N Engl J Med. 2000;342:1930–6. DOIPubMedGoogle Scholar
- Lesesne JB, Rothschild N, Erickson B, Korec S, Sisk R, Keller J, Cancer-associated hemolytic -uremic syndrome: analysis of 85 cases from a national registry. J Clin Oncol. 1989;115:781–9.PubMedGoogle Scholar
- Centers for Disease Control and Prevention. Health Information for International Travel 1999-2000. Atlanta, GA;1999. p. 168.
- Cheetham BF, Katz ME. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol. 1995;18:201–8. DOIPubMedGoogle Scholar