Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 6, Number 5—October 2000
Research

Naturally Occurring Ehrlichia chaffeensis Infection in Coyotes from Oklahoma

Alan KocanComments to Author , Gena Crowder Levesque, Lisa C. Whitworth, George L. Murphy, Sidney A. Ewing, and Robert W. Barker

Author affiliations: Oklahoma State University, Stillwater, Oklahoma, USA

Article in Chinese

Main Article

Figure

Agarose gel electrophoresis of results of PCR amplification of Ehrlichia chaffeensis nss rRNA gene from whole blood samples of coyotes numbers 9-11.* Lane 1= negative control (no DNA); Lane 2= coyote 9 (+); Lane 3= coyote 10 (+); Lane 4= coyote 11 (-); Lane 5 = positive control (E. chaffeensis-infected DH82 cells). M = 100-bp DNA ladder (Life Technologies, Rockville, MD).* * Ehrlichia forward primer ECC (5'-AGAACGAACGCTGGCGGCAAGC-3') and Ehrlichia reverse primer ECB (5'-CGTATTACCGCGGCTGCTGGCA-3'

Figure. Agarose gel electrophoresis of results of PCR amplification of Ehrlichia chaffeensis nss rRNA gene from whole blood samples of coyotes numbers 9-11.* Lane 1= negative control (no DNA); Lane 2= coyote 9 (+); Lane 3= coyote 10 (+); Lane 4= coyote 11 (-); Lane 5 = positive control (E. chaffeensis-infected DH82 cells). M = 100-bp DNA ladder (Life Technologies, Rockville, MD).* * Ehrlichia forward primer ECC (5'-AGAACGAACGCTGGCGGCAAGC-3') and Ehrlichia reverse primer ECB (5'-CGTATTACCGCGGCTGCTGGCA-3') amplified all Ehrlichia spp (12,18). These reactions (50 l) contained 10 l of template DNA in 10 mM Tris-Cl (pH 8.3), 0.2 mM each deoxynucleoside triphosphate (dNTP), 2 mM MgCl2, 50 mM KCl, 0.5 m each primer, and 1.25 U of Taq DNA polymerase (Promega Corporation, Madison, WI). A hot-start PCR was used in which each enzyme was added to reactions after an initial 3-min denaturation step at 94°C. Reactions consisted of 30 cycles of denaturation at 94°C for 1 min, annealing at 65°C for 2 min, and extension at 72°C for 2 min. Products of this reaction were used as template with species-specific primer sets for three nested reactions. Primers HE1 (5'-CAATTGCTTATAACCTTTTGGTTATAAAT-3') and HE3 (5'-TATAGGTACCGTCATTATCTTCCCTAT-3') (17) were used for E. chaffeensis-specific amplifications. Primers ECAN5 (5'-CAATTATTTATAGCCTCTGGCTATAGGA-3') (12,13) and HE3 were used for E. canis-specific amplifications, and primers EE5 (5'-(CAATTCCTAAATAGTCTCTGACTATTTAG-3') (this study) and HE3 were used for E. ewingii-specific amplifications. Reactions (50 l) contained 10 l of the reaction product with ECC and ECB primers as template, and the remaining reaction components as above. A hot-start PCR was used in which the enzyme was added to reactions after an initial 3-min denaturation step at 94°C. Reactions with species-specific primers were in two stages. The first consisted of three cycles of denaturation at 94°C for 1 min, annealing at 55oC for 2 min, and extension at 72°C for 1.5 min. The second consisted of 37 cycles of denaturation at 92°C for 1 min, annealing at 55°C for 2 min, and extension at 72°C for 1.5 min. Distilled, deionized water served as a negative control. Positive control DNA samples were purified from E. chaffeensis-infected DH82 cells, blood from a dog experimentally infected with E. canis, and diluted general primer PCR reactions of synovial fluid from a dog experimentally infected with E. ewingii. To prevent contamination of samples, DNA purification, PCR master mix assembly, and amplifications were performed in separate rooms. Positive displacement pipetters and aerosol-free pipette tips were also used as further precautions.

Main Article

References
  1. Eng  TR, Harkess  JR, Fishbein  DB, Dawson  JE, Greene  CN, Rredus  MA, Epidemiologic, clinical and laboratory findings of human ehrlichiosis in the United States,1988. JAMA. 1990;264:22518. DOIPubMedGoogle Scholar
  2. Dawson  JE, Childs  JE, Biggie  KL, Moore  C, Stallknecht  DE, Shaddock  J, White-tailed deer as a potential reservoir for Ehrlichia chaffeensis, the etiologic agent of human ehrlichiosis. J Wildl Dis. 1994;30:1628.PubMedGoogle Scholar
  3. Ewing  SA, Dawson  JE, Kocan  AA, Barker  RW, Warner  CK, Panciera  RJ, Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum (Acari: Ixodidae). J Med Entomol. 1995;32:36874.PubMedGoogle Scholar
  4. Lockhart  JM, Davidson  WR, Dawson  JE, Stallknecht  DE, Howerth  EW. Isolation of Ehrlichia chaffeensis from wild white-tailed deer (Odocoileus virginianus) confirms their role as natural reservoir hosts. J Clin Microbiol. 1997;35:16816.PubMedGoogle Scholar
  5. Lockhart  JM, Davidson  WR, Dawson  JE, Stallknecht  DE, Little  SE. Natural history of Ehrlichia chaffeensis in the Piedmont physiographic province of Georgia. J Parasitol. 1997;83:88794. DOIPubMedGoogle Scholar
  6. Lockhart  JM, Davidson  WR, Dawson  JE, Stallknecht  DE. Temporal association of Amblyomma americanum with the presence of Ehrlichia chaffeensis reactive antibodies in white-tailed deer. J Wildl Dis. 1995;31:11924.PubMedGoogle Scholar
  7. Magnarelli  LA, Anderson  AF, Stafford  KC, Dumler  JS. Antibodies to multiple tick-borne pathogens of babesiosis, ehrlichiosis, and Lyme borreliosis in white-footed mice. J Wildl Dis. 1997;33:46673.PubMedGoogle Scholar
  8. Davidson  WR, Lockhart  JM, Stallknecht  DE, Howerth  EW. Susceptibility of red and gray foxes to infection by Ehrlichia chaffeensis. J Wildl Dis. 1999;35:696702.PubMedGoogle Scholar
  9. Telford  SR, Dawson  JE. Persistent infection of C3H/HeJ mice by Ehrlichia chaffeensis. Vet Microbiol. 1996;52:10312. DOIPubMedGoogle Scholar
  10. Lockhart  JM, Davidson  WR, Stallknecht  DR, Dawson  JE. Lack of seroreactivity to Ehrlichia chaffeensis among rodent populations. J Wildl Dis. 1998;34:3926.PubMedGoogle Scholar
  11. Dawson  JE, Ewing  SA. Susceptibility of dogs to infection with Ehrlichia chaffeensis, causative agent of human ehrlichiosis. Am J Vet Res. 1992;53:13227.PubMedGoogle Scholar
  12. Dawson  JE, Biggie  KL, Warner  CK, Cookson  K, Jenkens  S, Levine  JF, Polymerase chain reaction evidence of Ehrlichia chaffeensis, an etiologic agent of human ehrlichiosis, in dogs from southeast Virginia. Am J Vet Res. 1996;57:11759.PubMedGoogle Scholar
  13. Murphy  GL, Ewing  SA, Whitworth  LC, Fox  JC, Kocan  AA. A molecular and serologic survey of Ehrlichia canis, E. chaffeensis, and E. ewingii in dogs and ticks from Oklahoma. Vet Parasitol. 1998;79:32539. DOIPubMedGoogle Scholar
  14. Hair  JA, Bowman  JL. Behavioral ecology of Amblyomma americanum (L.). In: Sauer J, Hair JA, editors. Morphology, physiology, and behavioral biology of ticks. New York: Ellis Horwood Limited;1986. p. 406-27.
  15. Cooley  RA, Kohls  GM. The genus Amblyomma (Ixodidae) in the United States. J Parasitol. 1944;30:77111. DOIGoogle Scholar
  16. Dawson  JE, Warner  CK, Baker  V, Ewing  SA, Stallknecht  DE, Davidson  WR, Ehrlichia-like 16S rDNA from wild white-tailed deer (Odocoileus virginianus). J Parasitol. 1996;82:528. DOIPubMedGoogle Scholar
  17. Anderson  BE, Sumner  JW, Dawson  JE, Tzianabos  T, Green  CR, Olson  JG, Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction. J Clin Microbiol. 1992;30:77580.PubMedGoogle Scholar
  18. Dawson  JE, Stallknecht  DE, Howerth  EW, Warner  C, Biggie  K, Davidson  WR, . Susceptibility of white-tailed deer (Odocoileus virginianus) to infection with Ehrlichia chaffeensis, the etiologic agent of human ehrlichiosis. J Clin Microbiol. 1994;32:27258.PubMedGoogle Scholar
  19. Wilton  SD, Lim  L, Dye  D, Laing  N. Bandstab: a PCR-based alternative to cloning PCR products. Biotechniques. 1997;22:6425.PubMedGoogle Scholar
  20. Kocan  AA, Breshears  M, Cummings  C, Panciera  RJ, Ewing  SA, Barker  RW. Naturally occurring hepatozoonosis in coyotes from Oklahoma. J Wildl Dis. 1999;35:869.PubMedGoogle Scholar
  21. Baker  RH. Origin, classification, and distribution. In: Halls L, editor. White-tailed deer. ecology and management. Harrisburg, PA: Stackpole Books;1984. p. 1-18.
  22. Nowak  RM. Walker's mammals of the world (5th ed). Baltimore: The John Hopkins University Press;1991. vol. 2. p. 1068-70.
  23. Patrick  CD, Hair  JA. White-tailed deer utilization of three different habitats and its influence on lone star tick populations. J Parasitol. 1978;64:11006. DOIGoogle Scholar
  24. Bloemer  SR, Zimmerman  RH. Ixodid ticks on the coyote and gray fox at Land-Between-the-Lakes, Kentucky-Tennessee, and implications for tick dispersal. J Med Entomol. 1988;25:58.PubMedGoogle Scholar
  25. Morchonton  RL, Hirth  DH. Behavior. In: Halls L, editor. White-tailed deer: ecology and management. Harrisburg, PA: Stackpole Books;1984. p. 129-68.
  26. Ewing  SA, Buckner  RG, Stringer  BG. The coyote, a potential host for Babesia canis and Ehrlichia sp. J Parasitol. 1964;50:704. DOIPubMedGoogle Scholar
  27. Buller  RS, Arens  M, Hmiel  SP, Paddock  CD, Sumner  JW, Rikihisa  Y, Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis. N Engl J Med. 1999;341:14855. DOIPubMedGoogle Scholar
  28. Anziani  OS, Ewing  SA, Barker  RW. Experimental transmission of a granulocytic form of the Tribe Ehrlichieae by Dermacentor variabilis and Amblyomma americanum to dogs. Am J Vet Res. 1990;51:92931.PubMedGoogle Scholar

Main Article

Page created: December 17, 2010
Page updated: December 17, 2010
Page reviewed: December 17, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external