Volume 7, Number 2—April 2001
THEME ISSUE
4th Decennial International Conference on Nosocomial and Healthcare-Associated Infections
Prevention is Primary
HIV Postexposure Prophylaxis in the 21st Century
Table
Study (ref) | Regimena | Timingb | Outcome |
---|---|---|---|
Connor (15) | ZDV | A+L+P | 8.3% vs 25.5% |
Shaffer (28) | ZDV | A+L | 9.4% vs 18.9% |
Wiktor (29) | ZDV | A+L | 12.2% vs 21.7% |
Dabis (30) | ZDV | A+L+P | 18.0% vs 27.5% |
Wade (31) | ZDV | A+L+P | 6.1% vs 26.6% |
ZDV | L+P | 10.0% vs 26.6% | |
ZDV | P (<48 hr) | 9.3% vs 26.6% | |
ZDV | P (>72 hr) | 18.4% vs 26.6% | |
Bulterys (22) | ZDV | A+L+P | 8.2% vs 15.5% |
ZDV | L+P | 8.6% vs 15.5% | |
ZDV | P | 8.1% vs 15.5% | |
Saba (23) | ZDV+3TC | A+L+P | 52% reduction |
ZDV+3TC | L+P | 40% reduction | |
ZDV+3TC | L | no reduction | |
Blanche (24) | ZDV+3TC | A+L+P | 2.6% |
ZDV | A+L+P | 6.5% | |
Guay (25) | ZDV | L+P | 25.1% |
NVP | L+P | 13.1% |
aZDV = zidovudine (azidothymidine); 3TC = lamivudine; NVP = nevirapine
bA - Prenatal therapy (usually beginning at 36 weeks); L - Therapy during labor and delivery; P - Postpartum treatment of infant.
References
- Henderson DK, Gerberding JL. Prophylactic zidovudine after occupational exposure to the human immunodeficiency virus: an interim analysis. J Infect Dis. 1989;160:321–7. DOIPubMedGoogle Scholar
- Henderson DK. Post-exposure chemoprophylaxis for occupational exposure to HIV-1: current status and prospects for the future. Am J Med. 1991;91(Suppl 3B):S312–9. DOIGoogle Scholar
- Spira AI, Marx PA, Patterson BK, Mahoney J, Koup RA, Wolinsky SM, Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med. 1996;183:215–25. DOIPubMedGoogle Scholar
- Pope M, Gezelter S, Gallo N, Hoffman L, Steinman RM. Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J Exp Med. 1995;182:2045–56. DOIPubMedGoogle Scholar
- Ruprecht RM, Bronson R. Chemoprevention of retroviral infection: success is determined by virus inoculum strength and cellular immunity. DNA Cell Biol. 1994;13:59–66. DOIPubMedGoogle Scholar
- Clerici M, Levin JM, Kessler HA, Harris A, Berzofsky JA, Landay AL, HIV-specific T-helper activity in seronegative health care workers exposed to contaminated blood. JAMA. 1994;271:42–6. DOIPubMedGoogle Scholar
- Pinto LA, Sullivan J, Berzofsky JA, Clerici M, Kessler HA, Landay AL, ENV-specific cytotoxic T lymphocyte responses in HIV seronegative health care workers occupationally exposed to HIV-contaminated body fluids. J Clin Invest. 1995;96:867–76. DOIPubMedGoogle Scholar
- D'Amico R, Pinto LA, Meyer P, Landay AL, Harris AA, Clerici M, Effect of zidovudine postexposure prophylaxis on the development of HIV- specific cytotoxic T-lymphocyte responses in HIV-exposed health care workers. Infect Control Hosp Epidemiol. 1999;20:428–30. DOIPubMedGoogle Scholar
- Henderson DK, Saah AJ, Zak BJ, Kaslow RA, Lance HC, Folks T, Risk of nosocomial infection with human T-cell lymphotropic virus type III/lymphadenopathy-associated virus in a large cohort of intensively exposed health care workers. Ann Intern Med. 1986;104:644–7.PubMedGoogle Scholar
- Böttiger D, Johansson NG, Samuelsson B, Zhang H, Putkonen P, Vrang L, Prevention of simian immunodeficiency virus, SIV, or HIV-2 infection in cynomolgus monkeys by pre- and postexposure administration of BEA-005. AIDS. 1997;11:157–62. DOIPubMedGoogle Scholar
- Tsai CC, Follis KE, Sabo A, Beck TW, Grant RF, Bischofberger N, Prevention of SIV infection in macaques by (R)-9-(2-phosphonylmethoxypropyl)adenine. Science. 1995;270:1197–9. DOIPubMedGoogle Scholar
- Tsai CC, Emau P, Follis KE, Beck TW, Benveniste RE, Bischofberger N, Effectiveness of postinoculation (R)-9-(2-phosphonylmethoxypropyl) adenine treatment for prevention of persistent simian immunodeficiency virus SIVmne infection depends critically on timing of initiation and duration of treatment. J Virol. 1998;72:4265–73.PubMedGoogle Scholar
- Otten R, Smith D, Pullium J, Adams D, Jackson E, Jaffe H, Potent efficacy of post-exposure prophylaxis (PEP) up to 72 hours after intra-vaginal exposure of pig-tailed macaques with a human-derived retrovirus (HIV-2). Proceedings of the 4th Decennial Conference on Nosocomial Infections; 2000 Mar 5-9; Atlanta, Georgia. Centers for Disease Control and Prevention; 2000.
- Lindegren ML, Byers RH Jr, Thomas P, Davis SF, Caldwell B, Rogers M, Trends in perinatal transmission of HIV/AIDS in the United States. JAMA. 1999;282:531–8. DOIPubMedGoogle Scholar
- Connor EM, Sperling RS, Gelber R, Kiselev P, Scott G, O'Sullivan MJ, Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med. 1994;331:1173–80. DOIPubMedGoogle Scholar
- Sperling RS, Shapiro DE, Coombs RW, Todd JA, Herman SA, McSherry GD, Maternal viral load, zidovudine treatment, and the risk of transmission of human immunodeficiency virus type 1 from mother to infant. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med. 1996;335:1621–9. DOIPubMedGoogle Scholar
- Eastman PS, Shapiro DE, Coombs RW, Frenkel LM, McSherry GD, Britto P, Maternal viral genotypic zidovudine resistance and infrequent failure of zidovudine therapy to prevent perinatal transmission of human immunodeficiency virus type 1 in pediatric AIDS Clinical Trials Group Protocol 076. J Infect Dis. 1998;177:557–64. DOIPubMedGoogle Scholar
- Frenkel LM, Cowles MK, Shapiro DE, Melvin AJ, Watts DH, McLellan C, Analysis of the maternal components of the AIDS clinical trial group 076 zidovudine regimen in the prevention of mother-to-infant transmission of human immunodeficiency virus type 1. J Infect Dis. 1997;175:971–4. DOIPubMedGoogle Scholar
- Kind C, Rudin C, Siegrist CA, Wyler CA, Biedermann K, Lauper U, Prevention of vertical HIV transmission: additive protective effect of elective Cesarean section and zidovudine prophylaxis. Swiss Neonatal HIV Study Group. AIDS. 1998;12:205–10. DOIPubMedGoogle Scholar
- Kind C. Mother-to-child transmission of human immunodeficiency virus type 1: influence of parity and mode of delivery. Paediatric AIDS Group of Switzerland. Eur J Pediatr. 1995;154:542–5. DOIPubMedGoogle Scholar
- Simpson BJ, Shapiro ED, Andiman WA. Reduction in the risk of vertical transmission of HIV-1 associated with treatment of pregnant women with orally administered zidovudine alone. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;14:145–52. DOIPubMedGoogle Scholar
- Bulterys M, Orloff S, Abrams E. Impact of zidovudine post-perinatal exposure prophylaxis (PPEP) on vertical HIV-1 transmission: a prospective cohort in four U.S. Cities [Abstract 15]. Global Strategies for the Prevention of HIV Transmisison from Mothers to Infants. Toronto, Ontario, Canada; Sept 1-6 1999.
- Saba J. the PETRA Trial Study Team. Interim analysis of early efficacy of three short ZDV/3TC combinations regimens to prevent mother-to-child transmission of HIV-1: the PETRA trial [Abstract S7]. Proceedings from the 6th Annual Conference on Retroviruses and Opportunistic Infections. Chicago, Illinois; 31 Jan-4 Feb 1999.
- Blanche S. Zidovudine-Lamivudine for Prevention of Mother to Child HIV-1 Transmission [Abstract 267]. Proceedings from the 6th Annual Conference on Retroviruses and Opportunistic Infections. Chicago, Illinois; 31 Jan-4 Feb 1999.
- Guay LA, Musoke P, Fleming T, Bagenda D, Allen M, Nakabiito C, Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet. 1999;354:795–802.PubMedGoogle Scholar
- Marseille E, Kahn JG, Mmiro F, Guay L, Musoke P, Fowler MG, Cost effectiveness of single-dose nevirapine regimen for mothers and babies to decrease vertical HIV-1 transmission in sub-Saharan Africa. Lancet. 1999;354:803–9.PubMedGoogle Scholar
- Lorenzi P, Spicher VM, Laubereau B, Hirschel B, Kind C, Rudin C, Antiretroviral therapies in pregnancy: maternal, fetal and neonatal effects. Swiss HIV Cohort Study, the Swiss Collaborative HIV and Pregnancy Study, and the Swiss Neonatal HIV Study. AIDS. 1998;12:F241–7. DOIPubMedGoogle Scholar
- Shaffer N, Chuachoowong R, Mock PA, Bhadrakom C, Siriwasin W, Young NL, Short-course zidovudine for perinatal HIV-1 transmission in Bangkok, Thailand: a randomised controlled trial. Bangkok Collaborative Perinatal HIV Transmission Study Group [see comments]. Lancet. 1999;353:773–80. DOIPubMedGoogle Scholar
- Wiktor SZ, Ekpini E, Karon JM, Nkengasong J, Maurice C, Severin ST, Short-course oral zidovudine for prevention of mother-to-child transmission of HIV-1 in Abidjan, Côte d'Ivoire: a randomised trial. Lancet. 1999;353:781–5. DOIPubMedGoogle Scholar
- Dabis F, Msellati P, Meda N, Welffens-Ekra C, You B, Manigart O, Six-month efficacy, tolerance, and acceptability of a short regimen of oral zidovudine to reduce vertical transmission of HIV in breastfed children in Côte d'Ivoire and Burkina Faso: a double-blind placebo- controlled multicentre trial. DITRAME Study Group. Diminution de la transmission mere-enfant. Lancet. 1999;353:786–92. DOIPubMedGoogle Scholar
- Wade NA, Birkhead GS, Warren BL, Charbonneau TT, French PT, Wang L, Abbreviated regimens of zidovudine prophylaxis and perinatal transmission of the human immunodeficiency virus. N Engl J Med. 1998;339:1409–14. DOIPubMedGoogle Scholar
- Cardo DM, Culver DH, Ciesielski CA, Srivastava PU, Marcus R, Abiteboul D, A case-control study of HIV seroconversion in health care workers after percutaneous exposure. N Engl J Med. 1997;337:1485–90. DOIPubMedGoogle Scholar
- Henderson DK. Postexposure treatment of HIV--taking some risks for safety's sake. N Engl J Med. 1997;337:1542–3. DOIPubMedGoogle Scholar
- Bangsberg D, Goldschmidt RH. Postexposure prophylaxis for occupational exposure to HIV. JAMA. 1999;282:1623–4. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Public Health Service guidelines for the management of health-care worker exposures to HIV and recommendations for postexposure prophylaxis. MMWR Morb Mortal Wkly Rep. 1998;47(RR-7):1–33.PubMedGoogle Scholar
- Beltrami EM, Luo C-C, De la Torre M. HIV Transmission after an occupational exposure despite postexposure prophylaxis with a combination drug regimen. Proceedings of the 4th Decennial Conference on Nosocomial Infections. Atlanta, Georgia; Mar 5-9 2000; Centers for Disease Control and Prevention.
- Descamps D, Flandre P, Calvez V, Peytavin G, Meiffredy V, Collin G, Mechanisms of virologic failure in previously untreated HIV-infected patients from a trial of induction-maintenance therapy. Trilege (Agence Nationale de Recherches sur le SIDA 072) Study Team). JAMA. 2000;283:205–11. DOIPubMedGoogle Scholar
- Bangsberg D, Hecht F, Charlebois E, Zolopa AR, Holodniy M, Sheiner L, Adherence to protease inhibitors, HIV-1 load, and development of drug resistance In an indigent population. AIDS. 2000;14:357–66. DOIPubMedGoogle Scholar
- Devereux HL, Youle M, Johnson MA, Loveday C. Rapid decline in detectability of HIV-1 drug resistance mutations after stopping therapy. AIDS. 1999;13:F123–7. DOIPubMedGoogle Scholar
- Blanche S, Tardieu M, Rustin P, Slama A, Barret B, Firtion G, Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet. 1999;354:1084–9. DOIPubMedGoogle Scholar
- Schmitt J, Taylor J, Fahey B, White T, Henderson D. Sustained decrease in percutaneous injuries (PI) in temporal association with universal/standard precautions (UP/SP) and PI-reducing strategies (PIRS). Proceedings of the 4th Decennial Conference on Nosocomial Infections. Atlanta, Georgia; Mar 5-9, 2000; Centers for Disease Control and Prevention.
- Haiduven DJ, Phillips ES, Clemons KV, Stevens DA. Percutaneous injury analysis: consistent categorization, effective reduction methods, and future strategies. Infect Control Hosp Epidemiol. 1995;16:582–9. DOIPubMedGoogle Scholar
- Haiduven DJ, Stevens DA. Eight-year analysis of percutaneous injuries: categorization, effective reduction methods and future strategies [Abstract J141]. Proceedings from the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy. Orlando, Florida; Oct 4-7, 1994; American Society for Microbiology.
- Beekmann SE, Vlahov D, Koziol DE, McShalley ED, Schmitt JM, Henderson DK. Temporal association between implementation of universal precautions and a sustained, progressive decrease in percutaneous exposures to blood. Clin Infect Dis. 1994;18:562–9. DOIPubMedGoogle Scholar
Page created: April 17, 2012
Page updated: April 17, 2012
Page reviewed: April 17, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.