Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 7, Number 5—October 2001

Ehrlichia-Infected Ticks on Migrating Birds

Article Metrics
citations of this article
EID Journal Metrics on Scopus
Anneli Bjöersdorff*†, Sven Bergström‡, Robert F. Massung§, Paul D. Haemig*‡, and Björn Olsen*‡Comments to Author 
Author affiliations: *Kalmar County Hospital, Kalmar, Sweden; †Lund University, Lund, Sweden; ‡Umeå University, Umeå, Sweden; §Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Cite This Article


During the spring of 1996, an estimated 581,395 Ehrlichia-infected ticks were imported into Sweden by migrating birds. Ehrlichia gene sequences found in ticks collected from these migrating birds were identical to those of granulocytic ehrlichiosis found in domestic animals and humans in Sweden. These findings support the idea that birds may play a role in dispersing Ehrlichia.

The genus Ehrlichia contains several species of intracellular bacteria capable of causing clinical disease in humans and animals. Ehrlichiosis caused by Ehrlichia of the Ehrlichia phagocytophila genogroup has been diagnosed in horses, dogs, and cats in Sweden, as well as in cattle and sheep (1). Cases of ehrlichiosis have been reported among humans in Scandinavia (2), and in Sweden, Ehrlichia have been detected in the tick Ixodes ricinus (3).

A common behavior of migrating birds is to feed and rest at stopover sites along their routes (4,5). At these sites, ticks and other ectoparasites may attach, and later detach along the migration route or in breeding areas. New foci of tick-borne diseases can be established in this way (6,7). Several investigations in Europe and the Middle East have examined the role of birds as carriers of ticks infected with tick-associated arboviruses and the Lyme borreliosis agent, Borrelia burgdorferi sensu lato (7). However, the involvement of birds in the ecology and epidemiology of ehrlichiosis has not yet been studied.

The Study

Our investigation was designed to determine the frequency of Ehrlichia-infected ticks on migrating birds in Sweden and estimate the number of Ehrlichia-infected ticks being imported and exported by these birds. Ticks were collected from migratory passerine birds at a stopover site in southern Sweden (east coast of Öland), identified, and checked for the presence of Ehrlichia by polymerase chain reaction (PCR). To determine if different genomic species of Ehrlichia could be found in bird-borne ticks and indirectly in the birds, all Ehrlichia-positive PCR products were further subjected to DNA sequencing analysis.

A total of 3,054 birds (1,204 in the spring and 1,850 in the fall) of 56 species were caught and examined for ticks. One hundred sixty-five ticks, all I. ricinus, were collected from 73 birds of 18 species (Table), for a tick infestation frequency of 2.4% (73/3,054) and a relative density of 0.054 ticks per bird (165/3,054). Fifty-one larvae, 112 nymphs, and 2 adult females of I. ricinus were found (Table), suggesting that nymphs are more common than larvae on birds and that adult I. ricinus rarely feed on birds.

Ehrlichia DNA was detected in none of the 51 larvae, in 8.0% (9/112) of the nymphs, and in none of the adult ticks. Ehrlichia DNA was detected in 8.9% (7/79) of the nymphs in the spring and 6.1% (2/33) in autumn.

Ehrlichia 16SrRNA gene sequences in the nine positive nymphs were analyzed by DNA sequencing. The gene sequences (base positions 20-570 corresponding to base numbering for the U.S. human granulocytic ehrlichiosis (HGE) agent 16S rDNA; GenBank Accession Number U02521) were identical to E. phagocytophila genogroup sequences found in clinical cases of granulocytic ehrlichiosis in horses, dogs, cats, and humans in Sweden (1).


Every spring, approximately 100 million birds migrate through Sweden, importing large numbers of potentially infectious ectoparasites. If the frequency of infected ticks is assumed to be similar to that in this study (7 Ehrlichia-infected ticks on 1,204 birds), 581,395 Ehrlichia-infected ticks were imported into Sweden by birds during the spring migration of 1996. The bird species we found carrying Ehrlichia-infected ticks (Table) breed in FennoScandia and arrived from wintering grounds in continental Europe, North Africa, and sub-Saharan Africa. During the fall migration, the frequency was lower (2 Ehrlichia-infected ticks found on 1,850 birds). However, even if the same number of birds migrated in the fall as in the spring, an estimated 108,108 Ehrlicha-infected ticks were exported from Sweden that fall by the birds. These figures support previous studies indicating that migratory birds are an important component in the dispersal of ticks infected with medically important pathogens (8).

Only one species of tick (I. ricinus) was recorded in this study. This species is the main vector of B. burgdorferi sensu lato, E. phagocytophila, and tick-borne encephalitis virus, both in Sweden and the rest of western and central Europe. The facts that a large number of birds are infested with this tick and that the Ehrlichia 16S rRNA gene sequences found in these ticks are identical to the gene sequences found in HGE patients in Sweden, Slovenia, and the USA suggest that birds may play an important role in the dispersal of I. ricinus infected with Ehrlichia and may contribute to the distribution of granulocytic ehrlichiosis (9). We found no I. ricinus larvae infected with Ehrlichia, which may suggest that birds are incompetent reservoirs of Ehrlichia but act as carriers of infected ticks. In this way, avian transport of Ehrlichia might differ from that of B. burgdorferi sensu lato. In the latter disease, birds not only carry infected ticks of all stages but can also carry latent infections of Borrelia that can be reactivated by the stress of migration (10). However, the potential of a vertebrate to function as a tick host and a reservoir for Ehrlichia depends on many factors, including the host's density in the tick habitat, the degree of contact between the potential tick vector and the host, and its infectivity. Therefore, the question of whether birds act as reservoirs of Ehrlichia has not yet been conclusively answered, and additional studies of various bird host species should be conducted over longer time spans than our study. Moreover, the reservoir competence of birds should be studied by isolation or detection of Ehrlichia after natural or experimental infection.

The apparent increase of granulocytic ehrlichiosis in animals and humans during the last few decades may be the result of several factors, such as increased awareness of this disease and the distribution of reservoirs, vectors, and host animals. Whether passerine birds have affected this increase has not yet been conclusively demonstrated. However, our data suggest that birds are important in the dispersal of Ehrlichia.

Dr. Bjöersdorff is a consultant in medical microbiology in the Department of Clinical Microbiology and at the Research Center for Zoonotic Ecology and Epidemiology, Kalmar, Sweden.



We thank Christian Cederroth for collecting ticks from the birds and Eva Olsson Engvall for valuable advice.

This study was supported by the Swedish Medical Research Council (07922), the Swedish Council for Forestry and Agricultural Research (23.0161), the Swedish Natural Science Research Council, and the J.C. and Seth M. Kempes Memory Foundation.



  1. Bjöersdorff  A, Svendenius  L, Owens  JH, Massung  RF. Feline granulocytic ehrlichiosis--a report of a new clinical entity and characterisation of the infectious agent. J Small Anim Pract. 1999;40:204. DOIPubMedGoogle Scholar
  2. Karlsson  U, Bjöersdorff  A, Massung  RF, Christensson  B. Human granulocytic ehrlichiosis--a clinical case in Sweden. Scand J Infect Dis. 2001;33:734. DOIPubMedGoogle Scholar
  3. von Stedingk  LV, Gürtelschmid  M, Hanson  HS, Gustafson  R, Dotevall  L, Engvall  EO, The human granulocytic ehrlichiosis (HGE) agent in Swedish ticks. Clin Microbiol Infect. 1997;3:5734. DOIPubMedGoogle Scholar
  4. Alerstam  T. Bird migration. Cambridge: Cambridge University Press; 1990.
  5. Rappole  JH. The ecology of migrating birds: a neotropical perspective. Washington: Smithsonian Institution Press; 1995.
  6. Anderson  JF, Johnson  RC, Magnarelli  LA, Hyde  FW. Involvement of birds in the epidemiology of the Lyme disease agent Borrelia burgdorferi. Infect Immun. 1986;51:3946.PubMedGoogle Scholar
  7. Olsen  B, Jaenson  TGT, Bergström  S. Prevalence of Borrelia burgdorferi sensu lato-infected ticks on migrating birds. Appl Environ Microbiol. 1995;61:30827.PubMedGoogle Scholar
  8. Olsen  B, Jaenson  TGT, Noppa  L, Bunikis  J, Bergström  S. A Lyme borreliosis cycle in seabirds and Ixodes uriae ticks. Nature. 1993;362:3402. DOIPubMedGoogle Scholar
  9. Petrovec  M, Furlan  SL, Zupanc  TA, Strle  F, Brouqui  P, Roux  V, Human disease in Europe caused by a granulocytic Ehrlichia species. J Clin Microbiol. 1997;35:15569.PubMedGoogle Scholar
  10. Gylfe  Å, Bergström  S, Lundström  J, Olsen  B. Reactivation of Borrelia infection in birds. Nature. 2000;403:724. DOIPubMedGoogle Scholar




Cite This Article

DOI: 10.3201/eid0705.017517

Table of Contents – Volume 7, Number 5—October 2001

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Bjorn Olsen, Research Center for Zoonotic Ecology and Epidemiology, Department of Infectious Diseases, Kalmar County Hospital, SE-391 85 Kalmar, Sweden; fax: 46 90-13 30-06

Send To

10000 character(s) remaining.


Page created: April 26, 2012
Page updated: April 26, 2012
Page reviewed: April 26, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.