Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 7, Number 7—June 2001
THEME ISSUE
International Conference on Emerging Infectious Diseases 2000
Conference Presentations

Adaptation of Bordetella pertussis to Vaccination: A Cause for Its Reemergence?

Frits R. MooiComments to Author , Inge H. M. van Loo, and Audrey King
Author affiliations: National Institute for Public Health and the Environment (RIVM) Bilthoven, The Netherlands

Main Article

Figure 2

Changes in the population structure of B. pertussis in The Netherlands as determined by IS1002-based DNA fingerprinting. Strains isolated from Dutch patients from 1949 to 1996 were stratified in periods of 5 to 8 years. The frequency of fingerprint types (Ft) in each period was determined and is displayed by colored bars. Genotypic diversity was calculated according to Nei, using fingerprint data (11). Adapted from (10).

Figure 2. . Changes in the population structure of B. pertussis in The Netherlands as determined by IS1002-based DNA fingerprinting. Strains isolated from Dutch patients from 1949 to 1996 were stratified in periods of 5 to 8 years. The frequency of fingerprint types (Ft) in each period was determined and is displayed by colored bars. Genotypic diversity was calculated according to Nei, using fingerprint data (11). Adapted from (10).

Main Article

References
  1. Willems  RJL, Mooi  FR. From whole cell to acellular pertussis vaccines. Reviews in Medical Microbiology. 1996;7:1321. DOIGoogle Scholar
  2. Halparin  SA. Developing better paediatric vaccines. The case of pertussis vaccine. BioDrugs. 1999;12:17591. DOIPubMedGoogle Scholar
  3. Wright  SW, Decker  MD, Edwards  KM. Incidence of pertussis infection in healthcare workers. Infect Control Hosp Epidemiol. 1999;20:1203. DOIPubMedGoogle Scholar
  4. Cherry  JD. Epidemiological, clinical, and laboratory aspects of pertussis in adults. Clin Infect Dis. 1999;28:S1127. DOIPubMedGoogle Scholar
  5. Andrews  R, Herceq  A, Roberts  C. Pertussis notifications in Australia. Commun Dis Intell. 1997;21:1458.PubMedGoogle Scholar
  6. DeSerres  G, Boulianne  N, Douville-Fradet  M, Duval  B. Pertussis in Quebec: ongoing epidemic since the late 1980s. Can Commun Dis Rep. 1995;15:458.
  7. De Melker  HE, Conyn-van Spaendock  MAE, Rümke  HC, van Wijngaarden  JK, Mooi  FR, Schellekens  JFP. Pertussis in the Netherlands: an outbreak despite high levels of immunization with whole cell vaccine. Emerg Infect Dis. 1997;3:1758. DOIPubMedGoogle Scholar
  8. Mooi  FR, van Oirschot  H, Heuvelman  K, van der Heide  HGJ, Gaastra  W, Willems  RJL. Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in the Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun. 1998;66:6705.PubMedGoogle Scholar
  9. Van der Zee  A, Vernooij  S, Peeters  M, van Embden  JDA, Mooi  FR. Dynamics of the population structure of Bordetella pertussis as measured by IS1002-associated RFLP: comparison of pre- and post-vaccination strains and global distribution. Microbiology. 1996;142:347985. DOIPubMedGoogle Scholar
  10. Van Loo  IHM, van der Heide  HGJ, Nagelkerke  NJD, Verhoef  J, Mooi  FR. Temporal trends in the population structure of Bordetella pertussis in the years 1949-1996 in a highly vaccinated population. J Infect Dis. 1999;79:91523. DOIGoogle Scholar
  11. Nei  M, Tajima  F. DNA polymorphism detectable by restriction endonucleases. Genetics. 1981;97:14563.PubMedGoogle Scholar
  12. Cherry  JD, Gornbein  J, Heininger  U, Stehr  K. A search for serologic correlates of immunity to Bordetella pertussis cough illnesses. Vaccine. 1998;16:19016. DOIPubMedGoogle Scholar
  13. Storsaeter  J, Hallander  HO, Gustafsson  L, Olin  P. Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine. 1998;16:90716. DOIPubMedGoogle Scholar
  14. De Magistris  MTA, DiTommaso  A, Domenighini  M, Censini  S, Tagliabue  AJR, Oksenberg  L, Interaction of the pertussis toxin peptide containing residues 30-42 with DR1 and the T-cell receptors of 12 human T-cell clones. Proc Natl Acad Sci U S A. 1992;89:29904. DOIPubMedGoogle Scholar
  15. Everest  P, Li  L, Douce  G, Charles  I, De Azavedo  J, Chatfield  S, Role of Bordetella pertussis P.69/pertactin protein and the P.69/pertactin RGD motif in the adherence to and invasion of mammalian cell. Microbiology. 1996;142:32618. DOIPubMedGoogle Scholar
  16. Streisinger  G, Owen  JE. Mechanisms of spontaneous and induced frameshift mutations in bacteriophage T4. Genetics. 1984;109:63359.
  17. Mooi  FR. Qiushui He, van Oirschot H, Mertsola J. Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. Infect Immun. 1999;67:31334.PubMedGoogle Scholar
  18. Cassiday  P, Sanden  G, Heuvelman  K, Mooi  FR, Bisgard  KM, Popovic  T. Polymorphism in Bordetella pertussis pertactin and pertussis toxin virulence factors in the United States, 1935-1999. J Infect Dis. 2000;12:14028. DOIPubMedGoogle Scholar
  19. Mastrantonio  P, Spigaglia  P, van Oirschot  H, van der Heide  HGL, Heuvelman  K, Stefanelli  P, Antigenic variants in Bordetella pertussis strains isolated from vaccinated and unvaccinated children. Microbiology. 1999;45:206975. DOIPubMedGoogle Scholar
  20. Ochman  H, Wilson  AC. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:7486. DOIPubMedGoogle Scholar

Main Article

Page created: April 27, 2012
Page updated: April 27, 2012
Page reviewed: April 27, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external