Volume 8, Number 10—October 2002
Letter
Evaluation and Validation of a Real-Time Polymerase Chain Reaction Assay for Rapid Identification of Bacillus anthracis
Table
No. positive/total | ||||||
---|---|---|---|---|---|---|
B. anthracis | No. analyzed | Temporal range and geographic origin | MLVA genotypes representeda | Ba1b | Ba2b | Ba3b |
Human isolates | 30 | 1943–1996 Africa, Asia, Australia, Europe, North America | 3, 4, 22, 23, 28, 32, 34, 35, 36, 37, 41, 43, 44, 45, 50, 66, 68 | 30/30 | 30/30 | 30/30 |
Animal isolates | 29 | Africa, Asia, Australia, Europe, North America, South America | 3, 10, 20, 26, 29, 30, 35, 38, 40, 45, 48, 49, 51, 55, 57, 78, 80, 81, 84, 85, 87, 89 | 29/29 | 29/29 | 29/29 |
Other isolates | 16 | 1950–1993 Africa, Asia, Europe, N. America |
13, 14, 21, 24, 47, 62, 69, 73, 77, 79, 82 | 16/16 | 16/16 | 16/16 |
Outbreak isolates | 317 | 2001 U.S. outbreak |
62 | 317/317 | 317/317 | 317/317 |
pXO1 cured | 5 | 1956–1974 North America |
5/5 | 0/5 | 5/5 | |
pXO2 cured | 1 | Africa | 0/1 | 1/1 | 1/1 |
aMLVA, multiple-locus variable-number tandem repeat analysis as described by Keim et al. (15). bBa1, Ba2, and Ba3 primer/probe sets as described in Materials and Methods.
References
- Makino SI, Cheun HI, Watarai M, Uchida I, Takeshi K. Detection of anthrax spores from the air by real-time PCR. Lett Appl Microbiol. 2001;33:237–40. DOIPubMedGoogle Scholar
- Makino SI, Iinuma-Okada Y, Maruyama T, Ezaki T, Sasakawa C, Yoshikawa M. Direct detection of Bacillus anthracis DNA in animals by polymerase chain reaction. J Clin Microbiol. 1993;31:547–51.PubMedGoogle Scholar
- Lee MA, Brightwell G, Leslie D, Bird H, Hamilton A. Fluorescent detection techniques for real-time multiplex strand specific detection of Bacillus anthracis using rapid PCR. J Appl Microbiol. 1999;87:218–23. DOIPubMedGoogle Scholar
- Turnbull PC, Hutson RA, Ward MJ, Jones MN, Quinn CP, Finnie NJ, et al. Bacillus anthracis but not always anthrax. J Appl Bacteriol. 1992;72:21–8.PubMedGoogle Scholar
- Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P, et al. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol. 1999;181:6509–15.PubMedGoogle Scholar
- Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P, et al. Sequence, assembly and analysis of pXO1 and pXO2. J Appl Microbiol. 1999;87:261–2. DOIPubMedGoogle Scholar
- Green BD, Battisti L, Koehler TM, Thorne CB, Ivins BE. Demonstration of a capsule plasmid in Bacillus anthracis. Infect Immun. 1985;49:291–7.PubMedGoogle Scholar
- Pannucci J, Okinaka RT, Sabin R, Kuske CR. Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species. J Bacteriol. 2002;184:134–41. DOIPubMedGoogle Scholar
- Ramisse V, Patra G, Garrigue H, Guesdon GL, Mock M. Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiol Lett. 1996;145:9–16. DOIPubMedGoogle Scholar
- Ramisse V, Patra G, Vaissaire J, Mock M. The Ba813 chromosomal DNA sequence effectively traces the whole Bacillus anthracis community. J Appl Microbiol. 1999;87:224–8. DOIPubMedGoogle Scholar
- Patra G, Vaissaire J, Weber-Levy M, Le Doujet C, Mock M. Molecular characterization of Bacillus strains involved in outbreaks of anthrax in France in 1997. J Clin Microbiol. 1998;36:3412–4.PubMedGoogle Scholar
- Jackson PJ, Hugh-Jones ME, Adair DM, Green G, Hill KK, Kuske CR, et al. PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: the presence of multiple Bacillus anthracis strains in different victims. Proc Natl Acad Sci U S A. 1998;95:1224–9. DOIPubMedGoogle Scholar
- Qi Y, Patra G, Liang X, Williams LE, Rose S, Redkar RJ, et al. Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl Environ Microbiol. 2001;67:3720–7. DOIPubMedGoogle Scholar
- Khan AS, Morse S, Lillibridge SR. Public-health preparedness for biological terrorism in the USA. Lancet. 2000;356:1179–82. DOIPubMedGoogle Scholar
- Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM, Okinaka R, et al. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol. 2000;182:2928–36. DOIPubMedGoogle Scholar
- Plotkin SA, Brachman PS, Utell M, Bumford FH, Atchison MM. An epidemic of inhalation anthrax, the first in the twentieth century. Am J Med. 1960;29:992–1001. DOIPubMedGoogle Scholar
- Hoffmaster AR, Fitzgerald CC, Ribot E, Mayer LW, Popovic T. Molecular Subtyping of Bacillus anthracis and the 2001 Bioterrorism-Associated Anthrax Outbreak, United States. Emerg Infect Dis. 2002;8:1111–1116. DOIPubMedGoogle Scholar
- Logan NA, Turnbull PC. Bacillus and recently derived genera. In: Murray PR, editor. Manual of clinical microbiology. Washington (DC): ASM Press; 2001. p. 357–69.
- Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol. 2000;66:2627–30. DOIPubMedGoogle Scholar
- Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol. 1991;41:343–6. DOIPubMedGoogle Scholar
- Kaneko T, Nozaki R, Aizawa K. Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Microbiol Immunol. 1978;22:639–41.PubMedGoogle Scholar
- Ticknor LO, Kolsto AB, Hill KK, Keim P, Laker MT, Tonks M, et al. Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Appl Environ Microbiol. 2001;67:4863–73. DOIPubMedGoogle Scholar
- Cockerill FR, Smith TF. Rapid-cycle real-time PCR: a revolution for clinical microbiology. ASM News. 2002;68:77–83.
- Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995;4:357–62.PubMedGoogle Scholar
Page created: July 19, 2010
Page updated: April 15, 2024
Page reviewed: April 15, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.