Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 8, Number 12—December 2002
Research

Meteorologic Influences on Plasmodium falciparum Malaria in the Highland Tea Estates of Kericho, Western Kenya

G. Dennis Shanks*Comments to Author , Simon I. Hay†‡Comments to Author , David I. Stern§, Kimutai Biomndo¶1, and Robert W. Snow†‡
Author affiliations: *U.S. Army Medical Research Unit–Kenya, Nairobi, Kenya; †University of Oxford, Oxford, U.K.; ‡Kenya Medical Research Institute/Wellcome Trust Collaborative Programme, Nairobi, Kenya; §Rensselaer Polytechnic Institute, Troy, New York, USA; ¶Brooke Bond Central Hospital, Kericho, Kenya

Main Article

Figure 2

Climate and malaria suitability data for the Kericho area from the global gridded climatology data, including meteorologic and malaria suitability time series. Minimum (bottom), mean (middle) and maximum (top) monthly temperature (a) total monthly precipitation (b) and mean vapor pressure (c) are all plotted with a 25-point (month) moving average (bold) to show the overall movement in the data. The number of months per year suitable for malaria transmission (d) are also plotted. Suitability was determined if rainfall exceeded 152 mm and temperature exceeded 15°C in any month (1,4). The significance of these movements is presented in Table.

Figure 2. Climate and malaria suitability data for the Kericho area from the global gridded climatology data, including meteorologic and malaria suitability time series. Minimum (bottom), mean (middle) and maximum (top) monthly temperature (a) total monthly precipitation (b) and mean vapor pressure (c) are all plotted with a 25-point (month) moving average (bold) to show the overall movement in the data. The number of months per year suitable for malaria transmission (d) are also plotted. Suitability was determined if rainfall exceeded 152 mm and temperature exceeded 15°C in any month (1,4). The significance of these movements is presented in Table.

Main Article

References
  1. Garnham  PCC. Malaria epidemics at exceptionally high altitudes in Kenya. BMJ. 1945;11:457. DOIGoogle Scholar
  2. Strangeways-Dixon  D. Paludrine (proguanil) as a malarial prophylactic amongst African labour in Kenya. East Afr Med J. 1950;27:12730.PubMedGoogle Scholar
  3. Malakooti  MA, Biomndo  K, Shanks  GD. Reemergence of epidemic malaria in the highlands of western Kenya. Emerg Infect Dis. 1998;4:6716.PubMedGoogle Scholar
  4. Garnham  PCC. The incidence of malaria at high altitudes. J Natl Malar Soc. 1948;7:27584.PubMedGoogle Scholar
  5. Lindblade  KA, Walker  ED, Onapa  AW, Katungu  J, Wilson  ML. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Trop Med Int Health. 2000;5:26374. DOIPubMedGoogle Scholar
  6. Van der Stuyft  P, Manirankunda  L, Delacollette  C. L'approche de risque dans le diagnostic du paludisme-maladie en regions d'altitude. Ann Soc Belg Med Trop. 1993;73:819.PubMedGoogle Scholar
  7. Bashford  G, Richens  J. Travel to the coast by highlanders and its implications for malaria control. P N G Med J. 1992;35:3067.PubMedGoogle Scholar
  8. Lindblade  KA, Walker  ED, Onapa  AW, Katungu  J, Wilson  ML. Highland malaria in Uganda: prospective analysis of an epidemic associated with El Niño. Trans R Soc Trop Med Hyg. 1999;93:4807. DOIPubMedGoogle Scholar
  9. Pitt  S, Pearcy  BE, Stevens  RH, Sharipov  A, Satarov  K, Banatvala  N. War in Tajikistan and re-emergence of Plasmodium falciparum. Lancet. 1998;352:1279. DOIPubMedGoogle Scholar
  10. Mouchet  J, Manguin  S, Sircoulon  J, Laventure  S, Faye  O, Onapa  AW, Evolution of malaria in Africa for the past 40 years: impact of climatic and human factors. J Am Mosq Control Assoc. 1998;14:12130.PubMedGoogle Scholar
  11. Mouchet  J. L'origine des épidémies de paludisme sur les Plateaux de Madagascar et les montagnes d'Afrique de L'est et du Sud. Bull Soc Pathol Exot. 1998;91:646.PubMedGoogle Scholar
  12. Warsame  M, Wernsdorfer  WH, Huldt  G, Björkman  A. An epidemic of Plasmodium falciparum malaria in Balcad, Somalia, and its causation. Trans R Soc Trop Med Hyg. 1995;89:1425. DOIPubMedGoogle Scholar
  13. Trape  JF. Impact of chloroquine resistance on malaria mortality. Comptes Rendus de l'Academie des Sciences, Paris. 1998;321:68997.
  14. Trape  JF. The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg. 2001;64:127.PubMedGoogle Scholar
  15. Bødker  R, Kisinza  W, Malima  R, Msangeni  H, Lindsay  S. Resurgence of malaria in the Usambara mountains, Tanzania, an epidemic of drug-resistant parasites. Glob Change Hum Health. 2000;1:13453. DOIGoogle Scholar
  16. Etchegorry  MG, Matthys  F, Galinski  M, White  NJ, Nosten  F. Malaria epidemic in Burundi. Lancet. 2001;357:10467. DOIPubMedGoogle Scholar
  17. Brown  V, Issak  MA, Rossi  M, Barboza  P, Paugam  A. Epidemic of malaria in north-eastern Kenya. Lancet. 1998;352:13567. DOIPubMedGoogle Scholar
  18. van der Hoek  W, Konradsen  F, Perera  D, Amerasinghe  PH, Amerasinghe  FP. Correlation between rainfall and malaria in the dry zone of Sri Lanka. Ann Trop Med Parasitol. 1997;91:9459. DOIPubMedGoogle Scholar
  19. Loevinsohn  ME. Climatic warming and increased malaria incidence in Rwanda. Lancet. 1994;343:7148. DOIPubMedGoogle Scholar
  20. Bouma  MJ, Dye  C, Van der Kaay  HJ. Falciparum malaria and climate change in the northwest Frontier province of Pakistan. Am J Trop Med Hyg. 1996;55:1317.PubMedGoogle Scholar
  21. Lindsay  SW, Birley  MH. Climate change and malaria transmission. Ann Trop Med Parasitol. 1996;90:57388.PubMedGoogle Scholar
  22. Lindsay  SW, Martens  WJM. Malaria in the African highlands: past, present and future. Bull World Health Organ. 1998;76:3345.PubMedGoogle Scholar
  23. McMichael  AJ, Haines  A, Sloof  R, Kovats  S. Climate change and human health. Geneva:World Health Organization; 1996.
  24. Martens  P, Kovats  RS, Nijhof  S, de Vries  P, Livermore  MTJ, Bradley  DJ, Climate change and future populations at risk of malaria. Glob Environ Change. 1999;9:89107. DOIGoogle Scholar
  25. National Research Council. Under the weather: climate, ecosystems, and infectious disease. Washington: The Council; 2001.
  26. Hay  SI, Cox  J, Rogers  DJ, Randolph  SE, Stern  DI, Shanks  GD, Climate change and the resurgence of malaria in the East African highlands. Nature. 2002;415:9059. DOIPubMedGoogle Scholar
  27. 2Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, et al. East African highland malaria resurgence independent of climate change. Directions in Science 2002;1:82–5.
  28. Hay  SI, Rogers  DJ, Randolph  SE, Stern  DI, Cox  J, Shanks  GD, Hot topic or hot air? Climate change and malaria resurgence in African highlands. Trends Parasitol. 2002;18. In press.
  29. Hay  SI, Noor  AM, Simba  M, Busolo  M, Guyatt  HL, Ochola  SA, The clinical epidemiology of malaria in the highlands of Western Kenya. Emerg Infect Dis. 2002;8:5438.PubMedGoogle Scholar
  30. Hay  SI, Simba  M, Busolo  M, Noor  AM, Guyatt  HL, Ochola  SA, Defining and detecting malaria epidemics in the highlands of western Kenya. Emerg Infect Dis. 2002;8:55562.PubMedGoogle Scholar
  31. 3Hay SI, Myers MF, Burke DS, Vaughn DW, Endy T, Ananda N, et al. Etiology of interepidemic periods of mosquito-borne disease. Proc Natl Acad Sci U S A 2000;97:9335–9.
  32. Shanks  GD, Biomndo  K, Hay  SI, Snow  RW. Changing patterns of clinical malaria since 1965 among a tea estate population located in the Kenyan highlands. Trans R Soc Trop Med Hyg. 2000;94:2535. DOIPubMedGoogle Scholar
  33. New  M, Hulme  M, Jones  P. Representing twentieth-century space-time climate variability. Part I: development of a 1961-90 mean monthly terrestrial climatology. J Climatol. 1999;12:82957. DOIGoogle Scholar
  34. New  M, Hulme  M, Jones  P. Representing twentieth-century space-time climate variability. Part II: development of 1901-1996 monthly grids of terrestrial surface climate. J Climatol. 2000;13:221738. DOIGoogle Scholar
  35. Granger  CWJ, Newbold  P. Spurious regressions in econometrics. J Econom. 1974;2:11120. DOIGoogle Scholar
  36. Stern  DI, Kaufmann  RK. Detecting a global warming signal in hemispheric temperature series: a structural time series analysis. Clim Change. 2000;47:41138. DOIGoogle Scholar
  37. Dickey  DA, Fuller  WA. Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc. 1979;74:42731. DOIGoogle Scholar
  38. Dickey  DA, Fuller  WA. Likelihood ratio statistics for autoregressive processes. Econometrica. 1981;49:105772. DOIGoogle Scholar
  39. Box  G, Pierce  D. Distribution of autocorrelations in autoregressive moving average time series models. J Am Stat Assoc. 1970;65:150926. DOIGoogle Scholar
  40. Matola  YG, White  GB, Magayuka  SA. The changed pattern of malaria endemicity and transmission at Amani in the eastern Usambara Mountains, north-eastern Tanzania. J Trop Med Hyg. 1987;90:12734.PubMedGoogle Scholar
  41. Marimbu  J, Ndayiragije  A, Le Bras  M, Chaperon  J. Environment and malaria in Burundi: apropos of a malaria epidemic in a non-endemic mountainous region. Bull Soc Pathol Exot. 1993;86:399401.PubMedGoogle Scholar
  42. Some  E. Effects and control of highland malaria epidemic in Uasin Gishu District, Kenya. East Afr Med J. 1994;71:28.PubMedGoogle Scholar
  43. Tulu  AN. Determinants of malaria transmission in the highlands of Ethiopia: the impact of global warming on mortality and morbidity ascribed to malaria. In: London School of Hygiene and Tropical Medicine. London:University of London; 1996.
  44. Kilian  AHD, Langi  P, Talisuna  A, Kabagambe  G. Rainfall pattern, El Niño and malaria in Uganda. Trans R Soc Trop Med Hyg. 1999;93:223. DOIPubMedGoogle Scholar
  45. Epstein  PR, Diaz  HF, Elias  S, Grabherr  G, Graham  NE, Martens  WJM, Biological and physical signs of climate change: focus on mosquito-borne diseases. Bull Am Meteorol Soc. 1998;79:40917. DOIGoogle Scholar
  46. Martens  P. How will climate change affect human health? Am Sci. 1999;87:53441.
  47. Patz  JA, Lindsay  SW. New challenges, new tools: the impact of climate change on infectious diseases. Curr Opin Microbiol. 1999;2:44551. DOIPubMedGoogle Scholar
  48. Bonora  S, De Rosa  FG, Boffito  M, Di Perri  G, Rossati  A. Rising temperature and the malaria epidemic in Burundi. Trends Parasitol. 2001;17:5723. DOIPubMedGoogle Scholar
  49. McCarthy  JJ, Canziani  OF, Leary  NA, Dokken  DJ, White  KS. Climate change 2001: impacts, adaptation, and vulnerability—contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge Univ. Press; 2001.
  50. Patz  JA, Reisen  WK. Immunology, climate change and vector-borne diseases. Trends Immunol. 2001;22:1712. DOIPubMedGoogle Scholar
  51. Reiter  P. Global-warming and vector-borne disease in temperate regions and at high altitude. Lancet. 1998;351:839. DOIPubMedGoogle Scholar
  52. Reiter  P. Climate change and mosquito-borne disease. Environ Health Perspect. 2001;109:14161. DOIPubMedGoogle Scholar
  53. Rogers  DJ, Randolph  SE. The global spread of malaria in a future, warmer world. Science. 2000;289:17636. DOIPubMedGoogle Scholar
  54. Rogers  DJ, Randolph  SE, Snow  RW, Hay  SI. Satellite imagery in the study and forecast of malaria. Nature. 2002;415:7105. DOIPubMedGoogle Scholar

Main Article

1 Dr. Biomndo is deceased.

Page created: July 19, 2010
Page updated: July 19, 2010
Page reviewed: July 19, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external