Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 9, Number 10—October 2003
Research

1918 Influenza Pandemic and Highly Conserved Viruses with Two Receptor-Binding Variants

Ann H. Reid*, Thomas A. Janczewski*, Raina M. Lourens*, Alex J. Elliot†, Rod S. Daniels†, Colin L. Berry‡, John S. Oxford‡§, and Jeffery K. Taubenberger*Comments to Author 
Author affiliations: *Armed Forces Institute of Pathology, Rockville, Maryland, USA; †National Institute for Medical Research, London, United Kingdom; ‡Queen Mary’s School of Medicine and Dentistry, London, United Kingdom; §Retroscreen Virology, Ltd., London, United Kingdom

Main Article

Figure

Partial HA1 domain cDNA sequences from five 1918–19 cases. A 563-bp fragment encoding antigenic (19,20) and receptor-binding (21) sites of the HA1 domain is shown, with the sequences aligned to A/Brevig Mission/1/1918 (BREVIG18) (15). Dots represent sequence identity as compared to BREVIG18. The numbering of the nucleotide sequence is aligned to A/PR/8/1934 (GenBank accession no. NC_002017) and refers to the sequence of the gene in the sense (mRNA) orientation. The partial HA1 translation produc

FigurePartial HA1 domain cDNA sequences from five 1918–19 cases. A 563-bp fragment encoding antigenic (19,20) and receptor-binding (21) sites of the HA1 domain is shown, with the sequences aligned to A/Brevig Mission/1/1918 (BREVIG18) (15). Dots represent sequence identity as compared to BREVIG18. The numbering of the nucleotide sequence is aligned to A/PR/8/1934 (GenBank accession no. NC_002017) and refers to the sequence of the gene in the sense (mRNA) orientation. The partial HA1 translation product for BREVIG18 is shown above its cDNA sequence. Amino acid numbering is aligned to the H3 HA1 domain (15). Boxed amino acids indicate potential glycosylation sites as predicted by the sequence (15). Residues that have been shown experimentally to affect receptor-binding specificity in H1 HAs, D77, A138, P186, D190, L194, and D225 (2123) are indicated by a ◇ symbol above these six residues. Residues defining four antigenic sites are indicated: Cb (●), Sa (■), Sb (◆), and Ca (▲) (19,20). Residues that have been mapped to both receptor-binding and antigenic sites (positions 194 and 225) are marked with two symbols. When a nucleotide change as compared to BREVIG18 results in a changed amino acid, the resultant amino acid is shown in lower case to the right of the BREVIG18 residue. Strain abbreviations and GenBank accession numbers: A/Brevig Mission/1/1918 (BREVIG18, # AF116575), A/South Carolina/1/1918 (SC18, # AF117241), A/New York/1/1918 (NY18, # AF116576), A/London/1/1918 (LONDON18, # AY184805), and A/London/1/1919 (LONDON19, # AY184806).

Main Article

References
  1. Crosby  A. America’s forgotten pandemic. Cambridge: Cambridge University Press; 1989.
  2. Jordan  E. Epidemic influenza: a survey. Chicago: American Medical Association; 1927.
  3. Reid  AH, Taubenberger  JK, Fanning  TG. The 1918 Spanish influenza: integrating history and biology. Microbes Infect. 2001;3:817. DOIPubMedGoogle Scholar
  4. Taubenberger  JK, Reid  AH, Janczewski  TA, Fanning  TG. Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philos Trans R Soc Lond B Biol Sci. 2001;356:182939. DOIPubMedGoogle Scholar
  5. Patterson  KD, Pyle  GF. The geography and mortality of the 1918 influenza pandemic. Bull Hist Med. 1991;65:421.PubMedGoogle Scholar
  6. Wright  PE, Webster  RG. Orthomyxoviruses. In: Knipe DM, Howley PM, editors. Fields virology. Vol 1. Philadelphia: Lippincott Williams and Wilkins; 2001:1533–79.
  7. Webster  RG, Bean  WJ, Gorman  OT, Chambers  TM, Kawaoka  Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56:15279.PubMedGoogle Scholar
  8. Lamb  RA, Takeda  M. Death by influenza virus protein. Nat Med. 2001;7:12868. DOIPubMedGoogle Scholar
  9. Parvin  JD, Smith  FI, Palese  P. Rapid RNA sequencing using double-stranded template DNA, SP6 polymerase, and 3′-deoxynucleotide triphosphates. DNA. 1986;5:16771. DOIPubMedGoogle Scholar
  10. Hay  AJ, Gregory  V, Douglas  AR, Lin  YP. The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci. 2001;356:186170. DOIPubMedGoogle Scholar
  11. Centers for Disease Control and Prevention. Influenza summary update: 2001–2 influenza season summary. June 10, 2002. [Accessed September 23, 2002]. Available from: URL: http://www.cdc.gov/ncidod/diseases/flu/weeklyarchives/01-02summary.htm
  12. Kilbourne  E. Influenza pandemics in perspective. JAMA. 1977;237:12258. DOIPubMedGoogle Scholar
  13. Schild  GC, Oxford  JS, de Jong  JC, Webster  RG. Evidence for host-cell selection of influenza virus antigenic variants. Nature. 1983;303:7069. DOIPubMedGoogle Scholar
  14. Gambaryan  A, Tuzikov  A, Piskarev  V, Yamnikova  SS, Lvov  DK, Robertson  JS, Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology. 1997;232:34550. DOIPubMedGoogle Scholar
  15. Reid  AH, Fanning  TG, Hultin  JV, Taubenberger  JK. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc Natl Acad Sci U S A. 1999;96:16516. DOIPubMedGoogle Scholar
  16. Taubenberger  JK, Reid  AH, Krafft  AE, Bijwaard  KE, Fanning  TG. Initial genetic characterization of the 1918 “Spanish” influenza virus [see comments]. Science. 1997;275:17936. DOIPubMedGoogle Scholar
  17. Winternitz  MC, Wason  IM, McNamara  FP. The pathology of influenza. New Haven (CT): Yale University Press; 1920.
  18. Wolbach  SB. Comments on the pathology and bacteriology of fatal influenza cases, as observed at Camp Devens, Mass. Johns Hopkins Hospital Bulletin. 1919;30:104.
  19. Caton  AJ, Brownlee  GG, Yewdell  JW, Gerhard  W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell. 1982;31:41727. DOIPubMedGoogle Scholar
  20. Raymond  F, Caton  A, Cox  N, Kendal  AP, Brownlee  GG. The antigenicity and evolution of influenza H1 haemagglutinin, from 1950–57 and 1977–1983: two pathways from one gene. Virology. 1986;148:27587. DOIPubMedGoogle Scholar
  21. Matrosovich  M, Gambaryan  A, Teneberg  S, Piskarev  VE, Yamnikova  SS, Lvov  DK, Avian influenza A viruses differ from human viruses by recognition of sialyloigosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology. 1997;233:22434. DOIPubMedGoogle Scholar
  22. Rogers  G, D’Souza  B. Receptor binding properties of human and animal H1 influenza virus isolates. Virology. 1989;173:31722. DOIPubMedGoogle Scholar
  23. Matrosovich  MN, Gambaryan  AS, Tuzikov  AB, Byramova  NE, Mochalova  LV, Golbraikh  AA, Probing of the receptor-binding sites of the H1 and H3 influenza A and influenza B virus hemagglutinins by synthetic and natural sialosides. Virology. 1993;196:11121. DOIPubMedGoogle Scholar
  24. Matrosovich  M, Tuzikov  A, Bovin  N, Gambaryan  A, Klimov  A, Castrucci  MR. etal. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol. 2000;74:850212. DOIPubMedGoogle Scholar
  25. Coiras  MT, Aguilar  JC, Galiano  M, Carlos  S, Gregory  V, Lin  YP, Rapid molecular analysis of the haemagglutinin gene of human influenza A H3N2 viruses isolated in Spain from 1996 to 2000. Arch Virol. 2001;146:213347. DOIPubMedGoogle Scholar
  26. Macken  C, Lu  H, Goodman  J, Boykin  L. The value of a database in surveillance and vaccine selection. In: Osterhaus A, Cox N, Hampson A, editors. Options for the control of influenza IV. Amsterdam: Excerpta Medica; 2001. p. 103–6.
  27. Reid  AH, Taubenberger  JK. The 1918 flu and other influenza pandemics: “over there” and back again. Lab Invest. 1999;79:95101.PubMedGoogle Scholar
  28. Fosso  C. Alone with death on the Tundra. In: Hedin R, Holthaus G, editors. Alaska: Reflections on land and spirit. Tucscon (AZ): University of Arizona Press; 1989. p. 215–22.
  29. Connor  R, Kawaoka  Y, Webster  R, Paulson  J. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology. 1994;205:1723. DOIPubMedGoogle Scholar
  30. Gensheimer  KF, Fukuda  K, Brammer  L, Cox  N, Patriarca  PA, Strikes  RA. Preparing for pandemic influenza: the need for enhanced surveillance. Vaccine. 2002;20(Suppl 2):S635. DOIPubMedGoogle Scholar
  31. Hayden  FG. Perspectives on antiviral use during pandemic influenza. Philos Trans R Soc Lond B Biol Sci. 2001;356:187784. DOIPubMedGoogle Scholar

Main Article

Page created: January 10, 2011
Page updated: January 10, 2011
Page reviewed: January 10, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external