Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 9, Number 6—June 2003

Salmonella in Birds Migrating through Sweden

On This Page
Article Metrics
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: To determine how common Salmonella infection is in the migrating wild bird population, we considered the biology of the bacterium and that of its avian hosts. Previous studies have attempted to determine in which stages wild birds become infected, how infections are acquired, and how this information should be translated into epidemiologic risk assessments for human and animal health. For instance, most published studies originate from small epizootics and are of either dead birds at feeding stations (1) or infected birds in or around barns where the livestock has Salmonella infection (2). This bias has important consequences, as the natural prevalence of Salmonella in the non-epizootic situation likely is overestimated. Finding infected birds close to a barn with infected cattle does not prove that transmission occurred from the birds to the animals. In addition, an epizootic at a feeding station does not prove that Salmonella normally occurs in the inflicted bird species, as the birds could have became infected through proximity to the infected animals, or in the case of the bird feeder, through feed contaminated from an unknown source. We need baseline surveillance data on the prevalence of Salmonella in non-epizootic situations, in healthy bird communities and in different stages of a bird’s life (e.g., during breeding, molting, and migration), to better understand Salmonella epidemiology in relation to wild birds.

We focused on the migratory bird fauna of the North Western Palearctic, where most of the birds migrate south to spend the nonbreeding season in continental Europe and Africa. In these areas, certain species, such as gulls, corvids, starlings, and thrushes, may overwinter in agricultural and urban areas were domestic animals are present. We sampled apparently healthy birds trapped on active migration at Ottenby Bird Observatory (56°12'N, 16°24'E), on the southernmost tip of the island Öland, southeast Sweden, during the migration periods July–November 2001, March–May 2002, and July–December 2002. We used a standardized trapping and sampling scheme, previously used at the same site for large-scale screening of Campylobacter infections in wild birds (3). To apply a random procedure in selection of species and persons, every 10th bird banded during the migration periods was sampled for Salmonella spp. We did not sample recaptured birds previously banded by us.

In total, 2,377 samples from 110 species of migratory birds (1,086 samples in autumn 2001, 777 in spring 2002, and 514 in autumn 2002) were analyzed for Salmonella infections. We applied routine procedures for isolation of putative Salmonella isolates, with enrichment in Rappaport-Vassiliadis broth and injection into Xylose-Lysine-Desoxycholate (XLD) agar. On this media, most Salmonella enterica serotype Enterica appears as red transparent colonies with black centers. Colonies with growth characteristics of Salmonella were observed in 236 samples, and full phenotypic identification was performed on these isolates by using standard biochemical and serologic testing. By using the API system (4), the isolates were identified as Citrobacter youngae, C. braakii, C. freundii, Escherichia vulneris, E. coli, Hafnia alvei, Klebsiella pneumoniae ozaenae, Acinetobacter baumanii , Providencia stuartii/rettgeri, and Yersinia kristen senii. Only one of the isolates, obtained from a Mistle Thrush (Turdus viscivorus) and sampled during the spring migration 2002, carried Salmonella. This isolate was characterized by serotyping according to the Kauffman-White serotyping scheme (5) at the reference laboratory of the Swedish Institute for Infectious Disease Control. The thrush isolate was identified as S. Schleissheim, a rare Salmonella serotype. Human salmonellosis caused by this serotype has been previously reported only in Turkey (6). No reservoir of S. Schleissheim, in animals or in humans, has been reported in Sweden in the last 10 years covered by the current epidemiologic records.

The failure to find Salmonella was probably not caused by technical problems. The sampling methods used, with fecal samples from fresh droppings or cloacal swabs, are well-established techniques for studying Salmonella prevalence in birds (2,7,8). The laboratory methods used, with enrichment in Rappaport-Vassaliadis broth and subsequent culturing on XLD-agar, are extremely sensitive for detecting Salmonella, even for samples highly contaminated with other Enterobacteriaceae (9). Thus, in this large dataset, only one Salmonella isolate was found, representing a serotype rarely observed in clinical or veterinary samples. In particular, one serotype, S. Typhimurium DT40, has been associated with epizootics in wintering passerine birds (10), but this serotype was not found in any of our samples.

Results from our study indicate that the prevalence of this serotype in the healthy wild bird population is low. Our dataset was composed of many different species, but the number of tested individual birds for each species was low in many cases. Earlier studies have pointed to certain species (gulls and corvids) in which the prevalence of Salmonella is sometimes high (2% to 20%), and argued that concern should be strong about epidemiologic disease transmission with these birds (7,8). These species have the capability to live in an opportunistic manner in close proximity to humans and can base their diet on waste products and garbage. Most bird species, however, have little or no niche overlap with humans or domesticated animals; virtually no data exists on the occurrence of Salmonella in this major group of migrating birds during a non-epizootic situation. Our results suggest that the natural occurrence of Salmonella in healthy birds during migration in Sweden may be low. Therefore, the Salmonella incidence is probably also low for most wild bird species. We suggest that researchers consider analyzing the non-epizootic natural occurrence of Salmonella in wild birds. Accumulated knowledge from many different regions, over many years, is a prerequisite for thorough risk assessment of the importance of Salmonella carriage in wild birds.

Mr. Hernandez is a Ph.D. student at the Research Institute for Zoonotic Ecology and Epidemiology (RIZEE) and at the Department of Clinical Microbiology, Kalmar County Hospital, Kalmar, Sweden. His research focuses on the role of wild birds in Salmonella epidemiology.



We thank Paul D. Haemig for valuable comments.

Financial support was provided by the Health Research Council of Southeast Sweden (2001–02), the Center for Environmental Research and the Medical Faculty of Umeå University. This is contribution no. 188 from the Ottenby Bird Observatory.


Jorge Hernandez*†, Jonas Bonnedahl*, Jonas Waldenström*§¶, Helena Palmgren‡, and Björn Olsen*‡¶Comments to Author 
Author affiliations: *Research Institute for Zoonotic Ecology and Epidemiology (RIZEE), Färjestaden, Sweden; †Kalmar County Hospital, Kalmar, Sweden; ‡Umeå University, Umeå, Sweden; §Lund University, Lund, Sweden; ¶Ottenby Bird Observatory, Degerhamn, Sweden



  1. D’Aoust  PY, Busby  DG, Ferns  L, Goltz  J, McBurney  S, Poppe  C, Salmonellosis in songbirds in the Canadian Atlantic provinces during winter-summer 1997–1998. Can Vet J. 2000;41:549.PubMedGoogle Scholar
  2. Čížek  A, Literák  I, Hejlíček  K, Treml  F, Smola  J. Salmonella contamination of the environment and its incidence in wild birds. Zentralbl Veterinarmed B. 1994;41:3207.PubMedGoogle Scholar
  3. Waldenström  J, Broman  T, Carlsson  I, Hasselquist  D, Achterberg  RP, Wagenaar  JA, Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl Environ Microbiol. 2002;68:59117. DOIPubMedGoogle Scholar
  4. Brooks  KA, Sodeman  TM. A clinical evaluation of the API microtube system for identification of Enterobacteriaceae. Am J Med Technol. 1974;40:5561.PubMedGoogle Scholar
  5. Das Kauffmann-White-Schema  KF. Ergebn. Mikrobiol. 1957;30:160216.
  6. Aksoycan  N, Meco  O, Ozsan  K, Tekeli  ME, Saganak  I, Ozuygur  B. First isolation of a strain of Salmonella schleissheim in Turkey from a patient with enteritis. Mikrobiyol Bul. 1983;4:2578.PubMedGoogle Scholar
  7. Hubálek  Z, Sixl  W, Mikulásková  M, Sixl-Vogel  B, Thiel  W, Halouzka  J, Salmonella in gulls and other free-living birds in the Czech republic. Cent Eur J Public Health. 1995;3:214.PubMedGoogle Scholar
  8. Palmgren  H, Sellin  M, Bergström  S, Olsen  B. Enteropathogenic bacteria in migrating birds arriving in Sweden. Scand J Infect Dis. 1997;29:5658. DOIPubMedGoogle Scholar
  9. Isenberg  HD. Interpretation of growth culture for stool samples. In: Isenberg HD, editor. Essential procedures for clinical microbiology. Washington: American Society for Microbiology; 1998. p. 90–4.
  10. Prescott  JF, Poppe  C, Goltz  J, Campbell  GD. Salmonella typhimurium phage type 40 in feeder birds. Vet Rec. 1998;142:732.PubMedGoogle Scholar


Cite This Article

DOI: 10.3201/eid0906.030072

Related Links


Table of Contents – Volume 9, Number 6—June 2003

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Björn Olsen, Department of Infectious Diseases, Umeå University, SE-901 87 Umeå, Sweden; fax: +46-90-13 30 06

Send To

10000 character(s) remaining.


Page created: December 22, 2010
Page updated: December 22, 2010
Page reviewed: December 22, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.