Volume 14, Number 3—March 2008
Dispatch
Methicillin-Resistant and -Susceptible Staphylococcus aureus Sequence Type 398 in Pigs and Humans
Figure 1
![A) Meta-analysis of the amplified fragment length polymorphism data obtained for the pig-associated methicillin-resistant Staphylococcus aureus sequence type 398 (ST398 MRSA) and its closely related methicillin-susceptible S. aureus (MSSA) strains, carriage MSSA isolates from healthy children and elderly persons, invasive MSSA from hospitalized children and elderly persons, and invasive animal S. aureus isolates (including 2 MRSA isolates) (10,11). Green and red represent 161,700 binary outcomes generated by high throughput restriction fragment length polymorphism with 147 marker fragments. Marker absence corresponds with green, marker presence corresponds with red, and gray represents ambiguous positions (i.e., weak bands), scored as marker absence in the mathematical analyses. ST398 MRSA strains are boxed. The dendrogram on the left shows the phylogenetic strain clustering; the dendrogram on the x-axis shows marker clustering. Marker groups are cluster specific. Markers on the right are defined as follows: blue, carriage isolates (n = 829); black, bacteremia isolates (n = 146); yellow, animal isolates (n = 77); red, ST398 MRSA isolates (n = 46); pink, reference strains (Mu50/N315). B) Detail highlighting the ST398 isolates. Markers and lanes on the right are defined as follows: black, carriage isolate; red, clinical isolate; 1, ST398 MRSA isolated from humans; 2, ST398 MRSA isolated from pigs; 3, ST398 MSSA human carriage isolates; 4, ST398 MSSA human bacteremia isolates; 5, ST398 MSSA animal clinical isolate.](/eid/images/07-0760-F1.jpg)
Figure 1. A) Meta-analysis of the amplified fragment length polymorphism data obtained for the pig-associated methicillin-resistant Staphylococcus aureus sequence type 398 (ST398 MRSA) and its closely related methicillin-susceptible S. aureus (MSSA) strains, carriage MSSA isolates from healthy children and elderly persons, invasive MSSA from hospitalized children and elderly persons, and invasive animal S. aureus isolates (including 2 MRSA isolates) (10,11). Green and red represent 161,700 binary outcomes generated by high throughput restriction fragment length polymorphism with 147 marker fragments. Marker absence corresponds with green, marker presence corresponds with red, and gray represents ambiguous positions (i.e., weak bands), scored as marker absence in the mathematical analyses. ST398 MRSA strains are boxed. The dendrogram on the left shows the phylogenetic strain clustering; the dendrogram on the x-axis shows marker clustering. Marker groups are cluster specific. Markers on the right are defined as follows: blue, carriage isolates (n = 829); black, bacteremia isolates (n = 146); yellow, animal isolates (n = 77); red, ST398 MRSA isolates (n = 46); pink, reference strains (Mu50/N315). B) Detail highlighting the ST398 isolates. Markers and lanes on the right are defined as follows: black, carriage isolate; red, clinical isolate; 1, ST398 MRSA isolated from humans; 2, ST398 MRSA isolated from pigs; 3, ST398 MSSA human carriage isolates; 4, ST398 MSSA human bacteremia isolates; 5, ST398 MSSA animal clinical isolate.
References
- Armand-Lefevre L, Ruimy R, Andremont A. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg Infect Dis. 2005;11:711–4.PubMedGoogle Scholar
- Witte W, Strommenger B, Stanek C, Cuny C. Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg Infect Dis. 2007;13:255–8.PubMedGoogle Scholar
- Hanselman BA, Kruth SA, Rousseau J, Low DE, Willey BM, McGeer A, Methicillin-resistant Staphylococcus aureus colonization in veterinary personnel. Emerg Infect Dis. 2006;12:1933–8.PubMedGoogle Scholar
- Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis. 2005;11:1965–6.PubMedGoogle Scholar
- Wulf M, van Nes A, Eikelenboom-Boskamp A, de Vries J, Melchers W, Klaassen C, Methicillin-resistant Staphylococcus aureus in veterinary doctors and students, the Netherlands. Emerg Infect Dis. 2006;12:1939–41.PubMedGoogle Scholar
- Ekkelenkamp MB, Sekkat M, Carpaij N, Troelstra A, Bonten MJ. Endocarditis due to meticillin-resistant Staphylococcus aureus originating from pigs [in Dutch]. Ned Tijdschr Geneeskd. 2006;150:2442–7.PubMedGoogle Scholar
- Huijsdens XW, van Dijke BJ, Spalburg E, van Santen-Verheuvel MG, Heck ME, Pluister GN, Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob. 2006;5:26. DOIPubMedGoogle Scholar
- Gibbs SG, Green CF, Tarwater PM, Mota LC, Mena KD, Scarpino PV. Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation. Environ Health Perspect. 2006;114:1032–7.PubMedGoogle Scholar
- Feil EJ, Enright MC. Analyses of clonality and the evolution of bacterial pathogens. Curr Opin Microbiol. 2004;7:308–13. DOIPubMedGoogle Scholar
- Melles DC, Gorkink RF, Boelens HA, Snijders SV, Peeters JK, Moorhouse MJ, Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus. J Clin Invest. 2004;114:1732–40.PubMedGoogle Scholar
- van Leeuwen WB, Melles DC, Alaidan A, Al-Ahdal M, Boelens HA, Snijders SV, Host- and tissue-specific pathogenic traits of Staphylococcus aureus. J Bacteriol. 2005;187:4584–91. DOIPubMedGoogle Scholar
- de Neeling AJ, van den Broek MJ, Spalburg EC, van Santen-Verheuvel MG, Dam-Deisz WD, Boshuizen HC, High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol. 2007;122:366–72. DOIPubMedGoogle Scholar
- Harmsen D, Claus H, Witte W, Rothganger J, Turnwald D, Vogel U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003;41:5442–8. DOIPubMedGoogle Scholar
- Bens CC, Voss A, Klaassen CH. Presence of a novel DNA methylation enzyme in methicillin-resistant Staphylococcus aureus isolates associated with pig farming leads to uninterpretable results in standard pulsed-field gel electrophoresis analysis. J Clin Microbiol. 2006;44:1875–6. DOIPubMedGoogle Scholar
- Devriese LA. A simplified system for biotyping Staphylococcus aureus strains isolated from animal species. J Appl Bacteriol. 1984;56:215–20.PubMedGoogle Scholar